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Abstract

Let E be a closed subset of the open unit disk G = {z:|z| <1}, and let u be a positive Borel
measure with support supp u = E. Denote by A, the restriction on E of the closed unit ball of
the Hardy space H,(G), 1 <p< co. In this paper we investigate orthogonality properties of the
extremal functions associated with the Kolmogorov, Gelfand, and linear n-widths of A, in
Ll](:uaE)7 1 <q< 0, qu
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Overview

Let G ={z:|z|<1} be the open unit disk in the complex plane C and let I =
{z:|z| = 1}. We assume that the circle I' is positively oriented with respect to G. Let
E be a compact subset of G, and let u be a finite positive Borel measure with support
supp i = E. We further assume that E contains infinitely many points.
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Denote by H,(G), 1 <p< oo, the Hardy space of those analytic functions g on G
such that |g|” has a harmonic majorant there. As is well known, such functions have
nontangential boundary values a.e. on I" that establish a one-to-one correspondence
between H,(G) and the closed subspace of L,(I') consisting of functions whose
Fourier coefficients of strictly negative index do vanish; a function in H,(G) is
recovered from its boundary values through a Cauchy as well as a Poisson integral.
We refer the reader to [9] for details on Hardy spaces, and we merely recall here a few
facts that will be of relevance to us.

By a theorem of Szegd, we have that log |g|€ L (I") whenever g€ H,(G) is not the
zero function. This entails that a H,(G)-function is uniquely defined by the values it
assumes on a subset of I' of positive Lebesgue measure. Conversely, whenever
peL,(I') is a positive function such that log pe L;(I'), the function

1
E,(z) = exp{ﬂ g %

log p(&) d|5|}, -eG, (L1)

lies in H,(G) and has modulus p a.e. on I'. This E,, is called the normalized outer
Jfunction associated with p, the normalization being that E,(0)>0. More generally, a
function is said to be outer in H,(G) if it is of the form cE, with ¢ a unimodular
constant. Obviously, an outer function has no zero in G. Granted the normalization
condition, the outer function E, is characterized by two facts, namely:

(i) |E;]=pae.onT,
(i) among all H,(G)-functions that satisfy (i), E, is largest-in-modulus pointwise
on G.

A particular type of H,, (G)-functions will also be important to us, namely finite
Blaschke products. These are the rational functions that are analytic in G and of unit
modulus on IT'; they assume the form ¢/¢*, where ¢ is an algebraic polynomial whose

roots lie in G and where ¢* indicates the reciprocal polynomial given by ¢*(z) =

Z"q(1/z) if n is the degree of ¢. The integer n is also called the degree of the Blaschke
product, and the latter is called normalized if ¢ is monic. For any positive integer n,
we let 4, denote the class of normalized Blaschke products of degree n; upon
splitting ¢ into linear factors in the previous definition, we see that each Be 4, can be
uniquely written as

B(z):ﬁ 2% e (1.2)

o =&z

Let A, be the restriction on E of the closed unit ball of the Hardy space H,(G).
Fisher and Stessin [7,8] proved that in two important cases: when 1 <g<p< oo, or
when 1<g< 0, p =2,

d"(Ap, Lg(p, E)) = dn(Ap, Ly(u1, E)) = 0n(Ap, Lg(1, E))

= inf B
52h, Sup 19Bll4,u
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where d", d,, and 0, are the Kolmogorov, Gelfand and linear n-widths of A,
in the space L,(u,E) (see, for example, [10]), and |||, , is the norm in the
space L,(u, E).

Let 1<g< oo, 1<p< 0. Set

nf sup [|@Bl,,. (1.3)

my, = mn(paqa :u) = Ble%' A
In peA,

In this paper we investigate orthogonal properties of the extremal functions ¢,
and B, which attain the value m,:

My = [[,Bully - (1.4)

That ¢, and B, indeed exist follows from the fact that the “inf-sup” in (1.3) is
certainly attained if the infimization is extended to Blaschke product of degree at
most n, because the restriction of this set to E is compact in L., (E) and so is A, in
L,(n, E); but the “inf” is obviously attained on %, because each elementary factor
in (1.2) has modulus strictly less than 1 on E. Necessarily ¢, is outer of L,(I")-norm
exactly 1, otherwise it could not meet the “sup” in (1.3). Clearly ¢, = 1 for p = o0,
and for 1<p< oo is known to satisfy the following equation:

m4 ":L l—|x|2 B,)(x)|? du(x el 1.5
e, (Q) o E|§_x|2|(</)n ) (X)|" du(x), el (1.5)

see [7, Proposition 1]. One consequence is that |¢,| extends continuously on I" (see
[6,7]). Actually, since |¢@,| is strictly positive and C!-smooth on T by (1.5), so is
log |@,| whose conjugate function Arg ¢, is then continuous, and therefore we see
upon taking the exponential that the outer function ¢, itself is continuous on I'. If
g<p then ¢, is uniquely determined by B, up to unimodular scalar multiples, but
this may fail if p<g (it is nevertheless true if E is hyperbolically small, see [7]). To
avoid trivial cases of nonuniqueness, we assume throughout without loss of
generality that ¢, (0)>0.

In Sections 2 and 3 we establish orthogonality properties of the extremal functions
¢, and B, when ¢<p. The authors do not know whether analogous results hold
when p<g. In Section 4, a connection with meromorphic approximation is
investigated.

1.2. Notation

Above and thereafter, L,(I'), 1<p< o, stands for the Lebesgue space of
functions ¢ measurable on I', with the norm

1/p
||(p||p=( [ 1ot |dz|) it 1<p<o (1.6)

and

lell., = esssup lp(&)] if p= 0.
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As well, L,(n, E), 1<g< o0, is the Lebesgue space of functions ¢ on E with the

norm
1/q
||<p||q,u=( / |<p<x>|qdu<x>) <.

Finally, for ¢ a positive Borel measure with support supp ¢ = E, we denote by
J:Hy(G)— Ly(0, E) the embedding operator. The operator J is given by restricting
an element p € H>(G) to E: Jop = . Let J* : Ly(0, E) > H>(G) be the adjoint of J.
It is easily verified that for ¢ € H>(G)

. L [ o)
) =57 [ Edoto), <1 (17)

1 —zx

(see, for example, [5]).

2. Orthogonality properties of ¢, and B,

Fix I<g< o0, 1<p< o0, and a positive integer n. It is not hard to see that (1.5) is
equivalent to the following relation:

[ ) 1@B) I dut) = [ u(@lo, O, 21)
where u is any function harmonic on G and continuous on G. Equality (2.1) implies
that

(I(@uBa) (X" du(x))" (&) = milo, (O |dE], el

where (|p,B,|"du)” is the balayage of |¢,B,|?du on T (see, for example, [11]). It
follows from (2.1) that for any ge H;(G)

/g( (@, Bn) ()| dua(x )—m;’/g(é)Iwn(é)l"ldﬁL (2.2)
E r

We represent B,(x) in the form B,(x) = w,(x)/w}(x), where

n

wa(x) =[] (x = xea), wi(x) =] (1 = %ea),

k=1 k=1

=

and X1, X2, ..., Xn, are zeros of B,, x;,€G, k=1, ...,n.
We now prove that for 1<g<p<

xk m p “— B
/E (W;@C)BM - <W>Bn<x>) [0, (01 By~ dpu(x) =0,

k=0,...n—1 (2.3)

For Be %, and peA,, we set
VB2 [ 0B du(x)
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and we denote by ¢ the unique function (up to unimodular scalar multiples) in A,
such that

W(B,pp) = sup ¥(B, o). (2.4)
QeA,

Necessarily ¢ is outer, so we normalize it as usual by setting ¢ z(0) >0. We write
a generic Be %4, as:

B(x) = o +ox + o F o X7 4 X"
X" x4 e g x+

o;eC,

and we single out B, to be

B,(x) ao+ a1 x + -+ a1 x4 x"
n\X) = Z — — 5
aox" +ax" 1+ - a1 x+1

where the a; are the coefficients of w,.

When B ranges over %,, then (ay, ..., 0,_1) ranges over an open subset Q of C",
and this way we coordinatize %,. Clearly, ¥ is jointly continuous with respect to
(%)o<j<n—1 €L and @ €A, when the latter is endowed with the topology induced by
the sup-norm on E. Observe also that A, is compact for that topology by the Cauchy
formula and the weak-compactness of balls in H,(G). Moreover, ¥ has partial
derivatives with respect to the real and imaginary parts of the o; that are likewise
jointly continuous with respect to (%)<, ; and ¢. Since ¢z is the unique
argument of the maximum in (2.4), it now follows from [4, Chapter III, Theorem 1]
that W (B, ¢p) in turn has partial derivatives with respect to the real and imaginary
parts of the «;, given by

8T(B’ (PB) _ 6\11(35 (P)
ORe(oy) — ORe(x)

8\{1(3, (pB) _ alP(Bv (/))
" ORe()  ORe(x)

P=Pp P=¢p

Because B— ¥(B, ¢ ) meets a minimum on %, at B = B, or in coordinates on Q at
o = a;, 0<j<n—1, the above partial derivatives must vanish at this point and
writing that

(8‘1’(3, pp) O¥(B, wg))

ORe(or) | OIm(og) =0,

B=B,

while taking into account that ¢ = ¢, yields (2.3) upon differentiating under the
integral sign.

Let E~' be the reflection of E in the unit circle and let D be the component of
C\E~! that contains the unit disk G. We have the following theorem (see [2] for ¢ = 2
and Ec(—1,1)).
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Theorem 1. The function (pﬁ/ 2 can be extended analytically to D, and satisfies the
equations

o0 =5, [ LOPOE g, e 1<g<w1gpen
Je (1 - enalP()
(2.5)

and

B0 =5 [ ( @B ), teD1<g<p<on.

' 27 JE (1 - £9)By(x) ok (v)
(2.6)
The following orthogonality relations are valid.
xFw, (x) L
—|§0n(x)|q|Bﬂ(x)|q dtu(x) :0, kZO,...,I’l— 17
/ i ()Pt (x)
I<g<sp<co. (2.7)

Proof. Let ¢ be any function in H»(G), and let g = (p/(pﬁ/z. Here and in what follows
we take that branch of the (p/2)th root that is positive on the positive part of the real
line. By (2.2), we can write

[ o0 @l | B dio) = [ o@Dl
Therefore,
T J(@h?) = migh?,
where J : Hy(G)— Ly(|g,|* ”|Ba|?du, E) is the embedding operator. From this, on

the basis of formula (1.7) where do = |@,|” ”|B,|? du, we obtain (2.5).
We now can rewrite (2.3) in the form

xk ok
/Em‘(q’n ) (X)|* du(x) = L(w)“@n ) (07 du(x).

By (2.2),

W i W 14
/E (w%)m ) ()| dp(x) =m / (W%)m(:n dé|
q fk
:mi/r ©)

— 10O |d¢]. (2.8)

w, (&

Hence, we have
k

X ék V4
| s B @ dut) =, [ sl 1azl 29)

wy,(x
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By (2.2) and (2.9), for any ge H,(G)

| E ol dut) =mg [ 2L g, @p e .10,

Letting

wi(x
g(x)=—1 () . <1,

— )l (x)
we get
1 (0uB) ()] .
2/< mBuW%ﬂM)
(¢

)
b (8)d¢] 1 [ B&)h*(&)de
2n/ (1-12) mzz_m'/rT

=miB,( goﬁ/z(t
and, then, (2.6).
By (2.10), for g = xK /g% k =0, ...,n — 1, we obtain that

/ X (@B /5" o) |d§|
£ Wn(X) (/Jf;/z

én —k 7/2 |d6| én k—1 P/2 é
/ w* / zw* T
consequently,

F B o
wa Al HI =0 =0

and (2.7) follows. [

3. The case p = o

Let 1<g< oo, p= o0, and let n be a positive integer. Since in this case
Sup ||(PB||q,u_||B||q,u7 Bef%na

peAq,
we can rewrite (1.3) and (1.4) in the form
my = Blgl;” HB”q,y = ||Bn||q7;¢' (31)

Let us consider the following function:

2
(©) =5 [[ BN ), eeT 52)
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Let u be any harmonic function on G that is continuous on the closed disk G.
By (3.2),

/E ()| B ()| diu(x) = / u(E)ga(E)|dE], (3.3)

and consequently
(IBul" du)™(&) = gu(©)ldE|,  EeT,

where (|B,|? du)” is the balayage of |B,|? du on T'. In particular, we have that
19l ) = m3- (3-4)

Consider now the function ¢,(z) defined on G by
_ 1 E+z p
0u) = e (- [ S roglan(e) i)

Because g, is strictly positive and continuous on I' as is apparent from (3.2), the
function ¢, is normalized-outer in H., (G) by (1.1) and, from the properties of such
functions (as described in the introduction), together with (3.4), ¢, satisfies the
following three properties:

(a) ¢, is nonvanishing in G;

(c) ¢, satisfies on I' the equation

gn(&) = mil$, (O (3:5)

Moreover, since g, is C'-smooth and non-vanishing on I by (3.2), so is |¢,| and
therefore ¢, itself is continuous on I'.

With the aid of ¢, we shall prove the following version of Theorem 1 for the case
when p = oo (see [3] for ¢ =2 and Ec(—1,1)).

Theorem 2. Let p = 0 and 1 <gq< 0. The function ¢, can be extended analytically to
D, and satisfies the equations

_ L [ Bl du(x)

q -
(<) =5 e 0 —e93.00 ¢eD (3.6)
and
q _1 |Bu(x)|” du(x)
The following orthogonality relations are valid.
M q-2 _ _ .
/E |WZ(X)‘2¢H(X) |B’1(x)| d,u(x) - Oa k= 07 - n 1. (38)
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Proof. Let g be any function in H,(G). Using (3.2), (3.3), and (3.5), we can write
/E 9(x)|Bu(x)|* du(x) = mj /r 9()|$,(&)*lde]. (3-9)
It follows from the last formula that
TI($,) = mid,, (3.10)
where J : Hy(G)— Ly(|B,|?/|¢,|* du, E) is the embedding operator. By (3.10) and

(1.7), we get (3.6).
Since for any Blaschke product Be 4,

[ 1B du /w )1 du(x) (3.11)

it follows that for k =0, . 1,

ko m -2 B
/E<w;;(x) Bulx) = (W) Bn(X)> |By(x)|" dp(x) = 0. (3.12)

We can see from (3.12) and (3.9) that

k
A 1B, ()| dp(x)

Wi (x)
_ W _ én k
_/E<W;(X)> IBI’I(X)|q d,u(x) - /];(wn( )>|¢n( )| |dé|
—m [ b (3.13)
" Jr wa() . .
By (3.9) and (3.13), for any ge H,(G)
g(x) _ g(¢) 2
| Z Bl duo = mf [ Lok, Placl. (3.14)
Letting
9(x) = T 1 <1,
we get
1 Bl Jg/E@%@&
2n Jg (1 —ix)By(x)9,(x) 2n (1—-7)

, L [BOMLOE_,
s [ P B 00,0

and, then, (3.7).
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By (3.14), for
Yk J—
g :(P—n,k—O, on—1,

we obtain that

¢ B ékmwa
/Ewn<x> o) M) = H e

/ f" k(f)” ‘dﬂ / én —k— 1¢’n
w* lw*
consequently,

X+ ‘Bn(x)r] o - .
/Ewn(x) ¢, (x) du(x) =0, k=0,..., 1,

and (3.8) follows. [

4. Connection with meromorphic approximation
For ¢ =2 and Ec(—1,1) there is an important connection between the best
meromorphic approximation error of the Markov function

1) =5 [ 29

2ni Jp z—Xx

(4.1)

and the extremal constant m,,.

Let 4, :(G), 1 <s< o0, be the class of all meromorphic functions on G that can be
represented in the form & = P/Q, where P belongs to the Hardy space H(G) and Q
is a polynomial of degree at most n, Q#0. Denote by

Aps = 1nf ||f h|,
he .
the error in best approximation of the Markov function f in the space L (I") by
meromorphic functions in the class .#, (G).
Let 1/s+ 1/t = 1. The following theorem describes a connection between A, and

the extremal constant m,(p, g, u) with ¢ = 2 and p = 21 (see [1,2]).
Theorem 3. (i) We have

A”’ws = m5(217 27 /’L)y

(ii) there exists a best meromorphic approximant h, in M,s(G) to the Markov
function f in the space Ly(T") such that

An,s = ||f - hile
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and
hn = Pn/Bna

where P,e Hy(G) and B, is a solution of the extremal problem (1.3) with ¢ =2 and
p =12t
(iii) the function h, satisfies a.e. on I the following equations:

(Q2B2)(E)(f — ha)(&) dE = Ayl (E))7| dE| if 1<s< oo,
and

(Ba(f — ha))(&) dE=|(f — ha)(O)||dE| if s=1.

Proof. We shall show that this theorem follows easily from results of Sections 2 and
3. Without loss of generality we assume that 1 <s<oo. Let

my = m"(2t7 27 ,Lt) = lnf sup ||(PB||2’1 = ||(pnBﬂ||2,y‘ (42)
Bedn peny ’
Since EcR it is not hard to prove that all zeros x; ,, ..., x,, of B, belong to the

smallest interval K(E) containing support supp p = E of pu (see, for example, [1]).
Using (1.5) with ¢ = 2 and p = 2t, we can write |¢,(&)| = |, ()| for EeT . Since ¢,, is
outer, it follows from this that

?y(C) = c@,(C), <eG, || =1. (4.3)

As above we can assume that ¢,(0)>0. Then (4.3) yields ¢, >0 on (—1,1).
By (2.10), for any function ge H;(G) we get

/ 9(x)92(x) B (x) du(x) = il / o)D) (O 1d2]
E r
and (see (4.1))

/F 9O P2EBAE (&) dE =m2 | g(&)Bu(E)|e,(&)]'|dE|. (4.4)

r

Since (4.4) is valid for any ge H,(G), it follows (see, for example, [9]) that there
exists a function pe H,, (G) such that

O2(E)Ba(E)f (&) — m2Bu(&) |, (8)"'|d¢| JdE = p(&)

a.e. on I'. From this we obtain that

2 ) _ p(&) )d — 2 24 4.5
OB (S0 - o)) de = il (@ 5)

a.e. on I'. Since ||¢@,||,, = 1, we can conclude from the last relation that
/= hall :miv (4.6)

where h, = P,/B, and P, = p/@>. We remark that h,e.#,,(G).



L. Baratchart et al. | Journal of Approximation Theory 126 (2004) 40-51 51
By the duality results (see [9]), (4.2) and (4.1), we get

An, = inf sup /r (0Bf)(2) di‘

Be %, peA,

= inf sup /(p(x)B(x) du(x)|=nm. (4.7)
Be%, QDGA, E

Therefore, by (4.6), (4.7), and the fact that the function &, e.#,(G), we get
m, = Aps =l = hall,- O

n
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