On Blaschke products associated with n-widths

L. Baratchart, ${ }^{\text {a, } 1}$ V.A. Prokhorov, ${ }^{\text {b,* }}$ and E.B. Saff ${ }^{\mathrm{c}, 1}$
${ }^{\text {a }}$ INRIA, 2004 Route des Lucioles B.P. 93, 06902 Sophia Antipolis Cedex, France
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, the University of South Alabama, Mobile, Alabama 36688-0002, USA
${ }^{\text {c }}$ Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

Received 17 April 2003; accepted in revised form 17 November 2003
Communicated by Allan Pinkus

Abstract

Let E be a closed subset of the open unit disk $G=\{z:|z|<1\}$, and let μ be a positive Borel measure with support supp $\mu=E$. Denote by \mathbf{A}_{p} the restriction on E of the closed unit ball of the Hardy space $H_{p}(G), 1 \leqslant p \leqslant \infty$. In this paper we investigate orthogonality properties of the extremal functions associated with the Kolmogorov, Gelfand, and linear n-widths of \mathbf{A}_{p} in $L_{q}(\mu, E), 1 \leqslant q<\infty, q \leqslant p$.

(C) 2003 Elsevier Inc. All rights reserved.

Keywords: n-widths; Blaschke product; Orthogonal polynomial; Meromorphic approximation

1. Introduction

1.1. Overview

Let $G=\{z:|z|<1\}$ be the open unit disk in the complex plane \mathbf{C} and let $\Gamma=$ $\{z:|z|=1\}$. We assume that the circle Γ is positively oriented with respect to G. Let E be a compact subset of G, and let μ be a finite positive Borel measure with support supp $\mu=E$. We further assume that E contains infinitely many points.

[^0]Denote by $H_{p}(G), 1 \leqslant p \leqslant \infty$, the Hardy space of those analytic functions g on G such that $|g|^{p}$ has a harmonic majorant there. As is well known, such functions have nontangential boundary values a.e. on Γ that establish a one-to-one correspondence between $H_{p}(G)$ and the closed subspace of $L_{p}(\Gamma)$ consisting of functions whose Fourier coefficients of strictly negative index do vanish; a function in $H_{p}(G)$ is recovered from its boundary values through a Cauchy as well as a Poisson integral. We refer the reader to [9] for details on Hardy spaces, and we merely recall here a few facts that will be of relevance to us.

By a theorem of Szegő, we have that $\log |g| \in L_{1}(\Gamma)$ whenever $g \in H_{p}(G)$ is not the zero function. This entails that a $H_{p}(G)$-function is uniquely defined by the values it assumes on a subset of Γ of positive Lebesgue measure. Conversely, whenever $\rho \in L_{p}(\Gamma)$ is a positive function such that $\log \rho \in L_{1}(\Gamma)$, the function

$$
\begin{equation*}
E_{\rho}(z)=\exp \left\{\frac{1}{2 \pi} \int_{\Gamma} \frac{\xi+z}{\xi-z} \log \rho(\xi) d|\xi|\right\}, \quad z \in G \tag{1.1}
\end{equation*}
$$

lies in $H_{p}(G)$ and has modulus ρ a.e. on Γ. This E_{ρ} is called the normalized outer function associated with ρ, the normalization being that $E_{\rho}(0)>0$. More generally, a function is said to be outer in $H_{p}(G)$ if it is of the form $c E_{\rho}$ with c a unimodular constant. Obviously, an outer function has no zero in G. Granted the normalization condition, the outer function E_{ρ} is characterized by two facts, namely:
(i) $\left|E_{\rho}\right|=\rho$ a.e. on Γ,
(ii) among all $H_{p}(G)$-functions that satisfy (i), E_{ρ} is largest-in-modulus pointwise on G.

A particular type of $H_{\infty}(G)$-functions will also be important to us, namely finite Blaschke products. These are the rational functions that are analytic in G and of unit modulus on Γ; they assume the form q / q^{*}, where q is an algebraic polynomial whose roots lie in G and where q^{*} indicates the reciprocal polynomial given by $q^{*}(z)=$ $z^{n} \overline{q(1 / \bar{z})}$ if n is the degree of q. The integer n is also called the degree of the Blaschke product, and the latter is called normalized if q is monic. For any positive integer n, we let \mathscr{B}_{n} denote the class of normalized Blaschke products of degree n; upon splitting q into linear factors in the previous definition, we see that each $B \in \mathscr{B}_{n}$ can be uniquely written as

$$
\begin{equation*}
B(z)=\prod_{k=1}^{n} \frac{z-\xi_{k}}{1-\bar{\xi}_{k} z}, \quad \xi_{k} \in G \tag{1.2}
\end{equation*}
$$

Let \mathbf{A}_{p} be the restriction on E of the closed unit ball of the Hardy space $H_{p}(G)$. Fisher and Stessin [7,8] proved that in two important cases: when $1 \leqslant q \leqslant p<\infty$, or when $1 \leqslant q<\infty, p=2$,

$$
\begin{aligned}
d^{n}\left(\mathbf{A}_{p}, L_{q}(\mu, E)\right) & =d_{n}\left(\mathbf{A}_{p}, L_{q}(\mu, E)\right)=\delta_{n}\left(\mathbf{A}_{p}, L_{q}(\mu, E)\right) \\
& =\inf _{B \in \mathscr{B}_{n}} \sup _{\varphi \in \mathbf{A}_{p}}\|\varphi B\|_{q, \mu},
\end{aligned}
$$

where d^{n}, d_{n}, and δ_{n} are the Kolmogorov, Gelfand and linear n-widths of \mathbf{A}_{p} in the space $L_{q}(\mu, E)$ (see, for example, [10]), and $\|\cdot\|_{q, \mu}$ is the norm in the space $L_{q}(\mu, E)$.

Let $1 \leqslant q<\infty, 1 \leqslant p \leqslant \infty$. Set

$$
\begin{equation*}
m_{n}=m_{n}(p, q, \mu)=\inf _{B \in \mathscr{B}_{n}} \sup _{\varphi \in \mathbf{A}_{p}}\|\varphi B\|_{q, \mu} \tag{1.3}
\end{equation*}
$$

In this paper we investigate orthogonal properties of the extremal functions φ_{n} and B_{n} which attain the value m_{n} :

$$
\begin{equation*}
m_{n}=\left\|\varphi_{n} B_{n}\right\|_{q, \mu} \tag{1.4}
\end{equation*}
$$

That φ_{n} and B_{n} indeed exist follows from the fact that the "inf-sup" in (1.3) is certainly attained if the infimization is extended to Blaschke product of degree at most n, because the restriction of this set to E is compact in $L_{\infty}(E)$ and so is \mathbf{A}_{p} in $L_{q}(\mu, E)$; but the "inf" is obviously attained on \mathscr{B}_{n}, because each elementary factor in (1.2) has modulus strictly less than 1 on E. Necessarily φ_{n} is outer of $L_{p}(\Gamma)$-norm exactly 1 , otherwise it could not meet the "sup" in (1.3). Clearly $\varphi_{n} \equiv 1$ for $p=\infty$, and for $1 \leqslant p<\infty$ is known to satisfy the following equation:

$$
\begin{equation*}
m_{n}^{q}\left|\varphi_{n}(\xi)\right|^{p}=\frac{1}{2 \pi} \int_{E} \frac{1-|x|^{2}}{|\xi-x|^{2}}\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x), \quad \xi \in \Gamma, \tag{1.5}
\end{equation*}
$$

see [7, Proposition 1]. One consequence is that $\left|\varphi_{n}\right|$ extends continuously on Γ (see [6,7]). Actually, since $\left|\varphi_{n}\right|$ is strictly positive and C^{1}-smooth on Γ by (1.5), so is $\log \left|\varphi_{n}\right|$ whose conjugate function $\operatorname{Arg} \varphi_{n}$ is then continuous, and therefore we see upon taking the exponential that the outer function φ_{n} itself is continuous on Γ. If $q \leqslant p$ then φ_{n} is uniquely determined by B_{n} up to unimodular scalar multiples, but this may fail if $p<q$ (it is nevertheless true if E is hyperbolically small, see [7]). To avoid trivial cases of nonuniqueness, we assume throughout without loss of generality that $\varphi_{n}(0)>0$.

In Sections 2 and 3 we establish orthogonality properties of the extremal functions φ_{n} and B_{n} when $q \leqslant p$. The authors do not know whether analogous results hold when $p<q$. In Section 4, a connection with meromorphic approximation is investigated.

1.2. Notation

Above and thereafter, $L_{p}(\Gamma), 1 \leqslant p \leqslant \infty$, stands for the Lebesgue space of functions φ measurable on Γ, with the norm

$$
\begin{equation*}
\|\varphi\|_{p}=\left(\int_{\Gamma}|\varphi(\xi)|^{p}|d \xi|\right)^{1 / p} \quad \text { if } 1 \leqslant p<\infty \tag{1.6}
\end{equation*}
$$

and

$$
\|\varphi\|_{\infty}=\underset{\Gamma}{\operatorname{ess} \sup }|\varphi(\xi)| \quad \text { if } p=\infty .
$$

As well, $L_{q}(\mu, E), 1 \leqslant q<\infty$, is the Lebesgue space of functions φ on E with the norm

$$
\|\varphi\|_{q, \mu}=\left(\int_{E}|\varphi(x)|^{q} d \mu(x)\right)^{1 / q}<\infty
$$

Finally, for σ a positive Borel measure with support supp $\sigma=E$, we denote by $J: H_{2}(G) \rightarrow L_{2}(\sigma, E)$ the embedding operator. The operator J is given by restricting an element $\varphi \in H_{2}(G)$ to $E: J \varphi=\varphi_{\mid E}$. Let $J^{*}: L_{2}(\sigma, E) \rightarrow H_{2}(G)$ be the adjoint of J. It is easily verified that for $\varphi \in H_{2}(G)$

$$
\begin{equation*}
\left(J^{*} J\right)(\varphi)(z)=\frac{1}{2 \pi} \int_{E} \frac{\varphi(x)}{1-z \bar{x}} d \sigma(x), \quad|z|<1 \tag{1.7}
\end{equation*}
$$

(see, for example, [5]).

2. Orthogonality properties of φ_{n} and B_{n}

Fix $1 \leqslant q<\infty, 1 \leqslant p<\infty$, and a positive integer n. It is not hard to see that (1.5) is equivalent to the following relation:

$$
\begin{equation*}
\int_{E} u(x)\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma} u(\xi)\left|\varphi_{n}(\xi)\right|^{p}|d \xi| \tag{2.1}
\end{equation*}
$$

where u is any function harmonic on G and continuous on \bar{G}. Equality (2.1) implies that

$$
\left(\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x)\right)^{*}(\xi)=m_{n}^{q}\left|\varphi_{n}(\xi)\right|^{p}|d \xi|, \quad \xi \in \Gamma
$$

where $\left(\left|\varphi_{n} B_{n}\right|^{q} d \mu\right)^{*}$ is the balayage of $\left|\varphi_{n} B_{n}\right|^{q} d \mu$ on Γ (see, for example, [11]). It follows from (2.1) that for any $g \in H_{1}(G)$

$$
\begin{equation*}
\int_{E} g(x)\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma} g(\xi)\left|\varphi_{n}(\xi)\right|^{p}|d \xi| \tag{2.2}
\end{equation*}
$$

We represent $B_{n}(x)$ in the form $B_{n}(x)=w_{n}(x) / w_{n}^{*}(x)$, where

$$
w_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k, n}\right), \quad w_{n}^{*}(x)=\prod_{k=1}^{n}\left(1-\bar{x}_{k, n} x\right)
$$

and $x_{1, n}, x_{2, n}, \ldots, x_{n, n}$ are zeros of $B_{n}, x_{k, n} \in G, k=1, \ldots, n$.
We now prove that for $1 \leqslant q \leqslant p<\infty$

$$
\begin{align*}
& \int_{E}\left(\frac{x^{k}}{w_{n}^{*}(x)} \overline{B_{n}(x)}-\overline{\left(\frac{x^{n-k} w_{n}(x)}{\left(w_{n}^{*}(x)\right)^{2}}\right)} B_{n}(x)\right)\left|\varphi_{n}(x)\right|^{q}\left|B_{n}(x)\right|^{q-2} d \mu(x)=0 \\
& \quad k=0, \ldots, n-1 \tag{2.3}
\end{align*}
$$

For $B \in \mathscr{B}_{n}$ and $\varphi \in \mathbf{A}_{p}$, we set

$$
\Psi(B, \varphi) \triangleq \int_{E}|(\varphi B)(x)|^{q} d \mu(x)
$$

and we denote by φ_{B} the unique function (up to unimodular scalar multiples) in \mathbf{A}_{p} such that

$$
\begin{equation*}
\Psi\left(B, \varphi_{B}\right)=\sup _{\varphi \in \mathbf{A}_{p}} \Psi(B, \varphi) \tag{2.4}
\end{equation*}
$$

Necessarily φ_{B} is outer, so we normalize it as usual by setting $\varphi_{B}(0)>0$. We write a generic $B \in \mathscr{B}_{n}$ as:

$$
B(x)=\frac{\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n-1} x^{n-1}+x^{n}}{\bar{\alpha}_{0} x^{n}+\bar{\alpha}_{1} x^{n-1}+\cdots+\bar{\alpha}_{n-1} x+1}, \quad \alpha_{j} \in \mathbf{C},
$$

and we single out B_{n} to be

$$
B_{n}(x)=\frac{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}}{\bar{a}_{0} x^{n}+\bar{a}_{1} x^{n-1}+\cdots+\bar{a}_{n-1} x+1},
$$

where the a_{j} are the coefficients of w_{n}.
When B ranges over \mathscr{B}_{n}, then $\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ ranges over an open subset Ω of \mathbf{C}^{n}, and this way we coordinatize \mathscr{B}_{n}. Clearly, Ψ is jointly continuous with respect to $\left(\alpha_{j}\right)_{0 \leqslant j \leqslant n-1} \in \Omega$ and $\varphi \in \mathbf{A}_{p}$ when the latter is endowed with the topology induced by the sup-norm on E. Observe also that \mathbf{A}_{p} is compact for that topology by the Cauchy formula and the weak-compactness of balls in $H_{p}(G)$. Moreover, Ψ has partial derivatives with respect to the real and imaginary parts of the α_{j} that are likewise jointly continuous with respect to $\left(\alpha_{j}\right)_{0 \leqslant j \leqslant n-1}$ and φ. Since φ_{B} is the unique argument of the maximum in (2.4), it now follows from [4, Chapter III, Theorem 1] that $\Psi\left(B, \varphi_{B}\right)$ in turn has partial derivatives with respect to the real and imaginary parts of the α_{j}, given by

$$
\frac{\partial \Psi\left(B, \varphi_{B}\right)}{\partial \operatorname{Re}\left(\alpha_{j}\right)}=\left.\frac{\partial \Psi(B, \varphi)}{\partial \operatorname{Re}\left(\alpha_{j}\right)}\right|_{\varphi=\varphi_{B}}, \quad \frac{\partial \Psi\left(B, \varphi_{B}\right)}{\partial \operatorname{Re}\left(\alpha_{j}\right)}=\left.\frac{\partial \Psi(B, \varphi)}{\partial \operatorname{Re}\left(\alpha_{j}\right)}\right|_{\varphi=\varphi_{B}}
$$

Because $B \mapsto \Psi\left(B, \varphi_{B}\right)$ meets a minimum on \mathscr{B}_{n} at $B=B_{n}$, or in coordinates on Ω at $\alpha_{j}=a_{j}, 0 \leqslant j \leqslant n-1$, the above partial derivatives must vanish at this point and writing that

$$
\left.\left(\frac{\partial \Psi\left(B, \varphi_{B}\right)}{\partial \operatorname{Re}\left(\alpha_{k}\right)}-i \frac{\partial \Psi\left(B, \varphi_{B}\right)}{\partial \operatorname{Im}\left(\alpha_{k}\right)}\right)\right|_{B=B_{n}}=0
$$

while taking into account that $\varphi_{B_{n}}=\varphi_{n}$, yields (2.3) upon differentiating under the integral sign.

Let E^{-1} be the reflection of E in the unit circle and let D be the component of $\overline{\mathbf{C}} \backslash E^{-1}$ that contains the unit disk G. We have the following theorem (see [2] for $q=2$ and $E \subset(-1,1))$.

Theorem 1. The function $\varphi_{n}^{p / 2}$ can be extended analytically to D, and satisfies the equations

$$
\begin{equation*}
m_{n}^{q}\left(\varphi_{n}^{p / 2}\right)(\xi)=\frac{1}{2 \pi} \int_{E} \frac{\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q}}{(1-\xi \bar{x}) \overline{\varphi_{n}^{p / 2}(x)}} d \mu(x), \quad \xi \in D, \quad 1 \leqslant q<\infty, 1 \leqslant p<\infty \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{n}^{q}\left(B_{n} \varphi_{n}^{p / 2}\right)(\xi)=\frac{1}{2 \pi} \int_{E} \frac{\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q}}{(1-\xi \bar{x}) \overline{B_{n}(x) \varphi_{n}^{p / 2}(x)}} d \mu(x), \quad \xi \in D, 1 \leqslant q \leqslant p<\infty . \tag{2.6}
\end{equation*}
$$

The following orthogonality relations are valid:

$$
\begin{align*}
& \int_{E} \frac{x^{k} \overline{w_{n}(x)}}{\left|w_{n}^{*}(x)\right|^{2} \varphi_{n}^{p / 2}(x)}\left|\varphi_{n}(x)\right|^{q}\left|B_{n}(x)\right|^{q-2} d \mu(x)=0, k=0, \ldots, n-1, \\
& \quad 1 \leqslant q \leqslant p<\infty \tag{2.7}
\end{align*}
$$

Proof. Let φ be any function in $H_{2}(G)$, and let $g=\varphi / \varphi_{n}^{p / 2}$. Here and in what follows we take that branch of the $(p / 2)$ th root that is positive on the positive part of the real line. By (2.2), we can write

$$
\int_{E} \varphi(x) \overline{\varphi_{n}^{p / 2}(x)}\left|\varphi_{n}(x)\right|^{q-p}\left|B_{n}(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma} \varphi(\xi) \overline{\varphi_{n}^{p / 2}(\xi)}|d \xi| .
$$

Therefore,

$$
J^{*} J\left(\varphi_{n}^{p / 2}\right)=m_{n}^{q} \varphi_{n}^{p / 2}
$$

where $J: H_{2}(G) \rightarrow L_{2}\left(\left|\varphi_{n}\right|^{q-p}\left|B_{n}\right|^{q} d \mu, E\right)$ is the embedding operator. From this, on the basis of formula (1.7) where $d \sigma=\left|\varphi_{n}\right|^{q-p}\left|B_{n}\right|^{q} d \mu$, we obtain (2.5).

We now can rewrite (2.3) in the form

$$
\int_{E} \frac{x^{k}}{w_{n}(x)}\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x)=\int_{E}\left(\overline{\frac{x^{n-k}}{w_{n}^{*}(x)}}\right)\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x) .
$$

By (2.2),

$$
\begin{align*}
\int_{E}\left(\frac{\overline{x^{n-k}}}{w_{n}^{*}(x)}\right)\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x) & =m_{n}^{q} \int_{\Gamma}\left(\frac{\overline{\xi^{n-k}}}{w_{n}^{*}(\xi)}\right)\left|\varphi_{n}(\xi)\right|^{p}|d \xi| \\
& =m_{n}^{q} \int_{\Gamma} \frac{\xi^{k}}{w_{n}(\xi)}\left|\varphi_{n}(\xi)\right|^{p}|d \xi| . \tag{2.8}
\end{align*}
$$

Hence, we have

$$
\begin{equation*}
\int_{E} \frac{x^{k}}{w_{n}(x)}\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma} \frac{\xi^{k}}{w_{n}(\xi)}\left|\varphi_{n}(\xi)\right|^{p}|d \xi| . \tag{2.9}
\end{equation*}
$$

By (2.2) and (2.9), for any $g \in H_{1}(G)$

$$
\begin{equation*}
\int_{E} \frac{g(x)}{w_{n}(x)}\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma} \frac{g(\xi)}{w_{n}(\xi)}\left|\varphi_{n}(\xi)\right|^{p}|d \xi| . \tag{2.10}
\end{equation*}
$$

Letting

$$
g(x)=\frac{w_{n}^{*}(x)}{(1-\bar{t} x) \varphi_{n}^{p / 2}(x)}, \quad|t|<1
$$

we get

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{E} \frac{\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q}}{(1-\bar{t} x) B_{n}(x) \varphi_{n}^{p / 2}(x)} d \mu(x) \\
& \quad=\frac{m_{n}^{q}}{2 \pi} \int_{\Gamma} \frac{\overline{B_{n}(\xi) \varphi_{n}^{p / 2}(\xi) \mid} d \xi \mid}{(1-\bar{t} \xi)}=m_{n}^{q} \frac{1}{2 \pi i} \int_{\Gamma} \frac{B_{n}(\xi) \varphi_{n}^{p / 2}(\xi) d \xi}{\xi-t} \\
& \quad=m_{n}^{q} \overline{B_{n}(t) \varphi_{n}^{p / 2}(t),}
\end{aligned}
$$

and, then, (2.6).
By (2.10), for $g=x^{k} / \varphi_{n}^{p / 2}, k=0, \ldots, n-1$, we obtain that

$$
\begin{aligned}
& \int_{E} \frac{x^{k}}{w_{n}(x)} \frac{\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q}}{\varphi_{n}^{p / 2}(x)} d \mu(x)=m_{n}^{q} \int_{\Gamma} \frac{\xi^{k} \overline{\varphi_{n}^{p / 2}(\xi)|d \xi|}}{w_{n}(\xi)} \\
& \quad=m_{n}^{q} \int_{\Gamma} \frac{\xi^{n-k} \varphi_{n}^{p / 2}(\xi)|d \xi|}{w_{n}^{*}(\xi)}=m_{n}^{q} \int_{\Gamma} \frac{\xi^{n-k-1} \varphi_{n}^{p / 2}(\xi) d \xi}{i w_{n}^{*}(\xi)}
\end{aligned}
$$

consequently,

$$
\int_{E} \frac{x^{k}}{w_{n}(x)} \frac{\left|\left(\varphi_{n} B_{n}\right)(x)\right|^{q}}{\varphi_{n}^{p / 2}(x)} d \mu(x)=0, \quad k=0, \ldots, n-1,
$$

and (2.7) follows.

3. The case $p=\infty$

Let $1 \leqslant q<\infty, p=\infty$, and let n be a positive integer. Since in this case

$$
\sup _{\varphi \in A_{\infty}}\|\varphi B\|_{q, \mu}=\|B\|_{q, \mu}, \quad B \in \mathscr{B}_{n},
$$

we can rewrite (1.3) and (1.4) in the form

$$
\begin{equation*}
m_{n}=\inf _{B \in \mathscr{B}_{n}}\|B\|_{q, \mu}=\left\|B_{n}\right\|_{q, \mu} \tag{3.1}
\end{equation*}
$$

Let us consider the following function:

$$
\begin{equation*}
g_{n}(\xi)=\left.\frac{1}{2 \pi} \int_{E} \frac{1-|x|^{2}}{|\xi-x|^{2}} B_{n}(x)\right|^{q} d \mu(x), \quad \xi \in \Gamma . \tag{3.2}
\end{equation*}
$$

Let u be any harmonic function on G that is continuous on the closed disk \bar{G}. By (3.2),

$$
\begin{equation*}
\int_{E} u(x)\left|B_{n}(x)\right|^{q} d \mu(x)=\int_{\Gamma} u(\xi) g_{n}(\xi)|d \xi| \tag{3.3}
\end{equation*}
$$

and consequently

$$
\left(\left|B_{n}\right|^{q} d \mu\right)^{*}(\xi)=g_{n}(\xi)|d \xi|, \quad \xi \in \Gamma,
$$

where $\left(\left|B_{n}\right|^{q} d \mu\right)^{*}$ is the balayage of $\left|B_{n}\right|^{q} d \mu$ on Γ. In particular, we have that

$$
\begin{equation*}
\left\|g_{n}\right\|_{L_{1}(\Gamma)}=m_{n}^{q} . \tag{3.4}
\end{equation*}
$$

Consider now the function $\phi_{n}(z)$ defined on G by

$$
\phi_{n}(z)=\exp \left(\left.\frac{1}{4 \pi} \int_{\Gamma} \frac{\xi+z}{\xi-z} \log \left|g_{n}(\xi) / m_{n}^{q}\right| d \xi \right\rvert\,\right)
$$

Because g_{n} is strictly positive and continuous on Γ as is apparent from (3.2), the function ϕ_{n} is normalized-outer in $H_{\infty}(G)$ by (1.1) and, from the properties of such functions (as described in the introduction), together with (3.4), ϕ_{n} satisfies the following three properties:
(a) ϕ_{n} is nonvanishing in G;
(b) $\left\|\phi_{n}\right\|_{2}=1$ and $\phi_{n}(0)>0$;
(c) ϕ_{n} satisfies on Γ the equation

$$
\begin{equation*}
g_{n}(\xi)=m_{n}^{q}\left|\phi_{n}(\xi)\right|^{2} \tag{3.5}
\end{equation*}
$$

Moreover, since g_{n} is C^{1}-smooth and non-vanishing on Γ by (3.2), so is $\left|\phi_{n}\right|$ and therefore ϕ_{n} itself is continuous on Γ.

With the aid of ϕ_{n} we shall prove the following version of Theorem 1 for the case when $p=\infty$ (see [3] for $q=2$ and $E \subset(-1,1)$).

Theorem 2. Let $p=\infty$ and $1 \leqslant q<\infty$. The function ϕ_{n} can be extended analytically to D, and satisfies the equations

$$
\begin{equation*}
m_{n}^{q} \phi_{n}(\xi)=\frac{1}{2 \pi} \int_{E} \frac{\left|B_{n}(x)\right|^{q} d \mu(x)}{(1-\xi \bar{x}) \overline{\phi_{n}(x)}}, \quad \xi \in D \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{n}^{q}\left(\phi_{n} B_{n}\right)(\xi)=\frac{1}{2 \pi} \int_{E} \frac{\left|B_{n}(x)\right|^{q} d \mu(x)}{(1-\xi \bar{x}) \overline{\phi_{n}(x) B_{n}(x)}}, \quad \xi \in D \tag{3.7}
\end{equation*}
$$

The following orthogonality relations are valid:

$$
\begin{equation*}
\int_{E} \frac{x^{k} \overline{w_{n}(x)}}{\left|w_{n}^{*}(x)\right|^{2} \phi_{n}(x)}\left|B_{n}(x)\right|^{q-2} d \mu(x)=0, \quad k=0, \ldots, n-1 \tag{3.8}
\end{equation*}
$$

Proof. Let g be any function in $H_{1}(G)$. Using (3.2), (3.3), and (3.5), we can write

$$
\begin{equation*}
\int_{E} g(x)\left|B_{n}(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma} g(\xi)\left|\phi_{n}(\xi)\right|^{2}|d \xi| \tag{3.9}
\end{equation*}
$$

It follows from the last formula that

$$
\begin{equation*}
J^{*} J\left(\phi_{n}\right)=m_{n}^{q} \phi_{n} \tag{3.10}
\end{equation*}
$$

where $J: H_{2}(G) \rightarrow L_{2}\left(\left|B_{n}\right|^{q} /\left|\phi_{n}\right|^{2} d \mu, E\right)$ is the embedding operator. By (3.10) and (1.7), we get (3.6).

Since for any Blaschke product $B \in \mathscr{B}_{n}$

$$
\begin{equation*}
\int_{E}|B(x)|^{q} d \mu(x) \geqslant \int_{E}\left|B_{n}(x)\right|^{q} d \mu(x) \tag{3.11}
\end{equation*}
$$

it follows that for $k=0, \ldots, n-1$,

$$
\begin{equation*}
\int_{E}\left(\frac{x^{k}}{w_{n}^{*}(x)} \overline{B_{n}}(x)-\left(\overline{\frac{x^{n-k} w_{n}(x)}{\left(w_{n}^{*}(x)\right)^{2}}}\right) B_{n}(x)\right)\left|B_{n}(x)\right|^{q-2} d \mu(x)=0 \tag{3.12}
\end{equation*}
$$

We can see from (3.12) and (3.9) that

$$
\begin{align*}
& \int_{E} \frac{x^{k}}{w_{n}(x)}\left|B_{n}(x)\right|^{q} d \mu(x) \\
& \quad=\int_{E}\left(\overline{\frac{x^{n-k}}{w_{n}^{*}(x)}}\right)\left|B_{n}(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma}\left(\overline{\frac{\xi^{n-k}}{w_{n}^{*}(\xi)}}\right)\left|\phi_{n}(\xi)\right|^{2}|d \xi| \\
& \quad=m_{n}^{q} \int_{\Gamma} \frac{\xi^{k}}{w_{n}(\xi)}\left|\phi_{n}(\xi)\right|^{2}|d \xi| . \tag{3.13}
\end{align*}
$$

By (3.9) and (3.13), for any $g \in H_{1}(G)$

$$
\begin{equation*}
\int_{E} \frac{g(x)}{w_{n}(x)}\left|B_{n}(x)\right|^{q} d \mu(x)=m_{n}^{q} \int_{\Gamma} \frac{g(\xi)}{w_{n}(\xi)}\left|\phi_{n}(\xi)\right|^{2}|d \xi| \tag{3.14}
\end{equation*}
$$

Letting

$$
g(x)=\frac{w_{n}^{*}(x)}{(1-\bar{t} x) \phi_{n}(x)},|t|<1
$$

we get

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{E} \frac{\left|B_{n}(x)\right|^{q}}{(1-\bar{t} x) B_{n}(x) \phi_{n}(x)}=\frac{m_{n}^{q}}{2 \pi} \int_{\Gamma} \frac{\overline{B_{n}(\xi) \phi_{n}(\xi)}|d \xi|}{(1-\bar{t} \xi)} \\
& m_{n}^{q} \overline{\frac{1}{2 \pi i} \int_{\Gamma} \frac{B_{n}(\xi) \phi_{n}(\xi) d \xi}{\xi-t}}=m_{n}^{q} \overline{B_{n}(t) \phi_{n}(t)}
\end{aligned}
$$

and, then, (3.7).

By (3.14), for

$$
g=\frac{x^{k}}{\phi_{n}}, k=0, \ldots, n-1,
$$

we obtain that

$$
\begin{aligned}
\int_{E} \frac{x^{k}}{w_{n}(x)} \frac{\left|B_{n}(x)\right|^{q}}{\phi_{n}(x)} d \mu(x) & =m_{n}^{q} \int_{\Gamma} \frac{\xi^{k} \overline{\phi_{n}(\xi)}|d \xi|}{w_{n}(\xi)} \\
& =m_{n}^{q} \int_{\Gamma} \frac{\xi^{n-k} \phi_{n}(\xi)|d \xi|}{w_{n}^{*}(\xi)}=m_{n}^{q} \int_{\Gamma} \frac{\xi^{n-k-1} \phi_{n}(\xi) d \xi}{i w_{n}^{*}(\xi)}
\end{aligned}
$$

consequently,

$$
\int_{E} \frac{x^{k}}{w_{n}(x)} \frac{\left|B_{n}(x)\right|^{q}}{\phi_{n}(x)} d \mu(x)=0, \quad k=0, \ldots, n-1
$$

and (3.8) follows.

4. Connection with meromorphic approximation

For $q=2$ and $E \subset(-1,1)$ there is an important connection between the best meromorphic approximation error of the Markov function

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{E} \frac{d \mu(x)}{z-x} \tag{4.1}
\end{equation*}
$$

and the extremal constant m_{n}.
Let $\mathscr{M}_{n, s}(G), 1 \leqslant s \leqslant \infty$, be the class of all meromorphic functions on G that can be represented in the form $h=P / Q$, where P belongs to the Hardy space $H_{s}(G)$ and Q is a polynomial of degree at most $n, Q \not \equiv 0$. Denote by

$$
\Delta_{n, s}=\inf _{h \in \mathscr{M}_{n, s}(G)}\|f-h\|_{s}
$$

the error in best approximation of the Markov function f in the space $L_{s}(\Gamma)$ by meromorphic functions in the class $\mathscr{M}_{n, s}(G)$.

Let $1 / s+1 / t=1$. The following theorem describes a connection between $\Delta_{n, s}$ and the extremal constant $m_{n}(p, q, \mu)$ with $q=2$ and $p=2 t$ (see [1,2]).

Theorem 3. (i) We have

$$
\Delta_{n, s}=m_{n}^{2}(2 t, 2, \mu)
$$

(ii) there exists a best meromorphic approximant h_{n} in $\mathscr{M}_{n, s}(G)$ to the Markov function f in the space $L_{s}(\Gamma)$ such that

$$
\Delta_{n, s}=\left\|f-h_{n}\right\|_{s}
$$

and

$$
h_{n}=P_{n} / B_{n},
$$

where $P_{n} \in H_{s}(G)$ and B_{n} is a solution of the extremal problem (1.3) with $q=2$ and $p=2 t$;
(iii) the function h_{n} satisfies a.e. on Γ the following equations:

$$
\left(\varphi_{n}^{2} B_{n}^{2}\right)(\xi)\left(f-h_{n}\right)(\xi) d \xi=\Delta_{n, s}\left|\varphi_{n}(\xi)\right|^{2 t}|d \xi| \quad \text { if } 1<s \leqslant \infty
$$

and

$$
\left(B_{n}^{2}\left(f-h_{n}\right)\right)(\xi) d \xi=\left|\left(f-h_{n}\right)(\xi)\right||d \xi| \quad \text { if } s=1
$$

Proof. We shall show that this theorem follows easily from results of Sections 2 and 3. Without loss of generality we assume that $1<s \leqslant \infty$. Let

$$
\begin{equation*}
m_{n}=m_{n}(2 t, 2, \mu)=\inf _{B \in \mathscr{B}_{n}} \sup _{\varphi \in \mathbf{A}_{2 t}}\|\varphi B\|_{2, \mu}=\left\|\varphi_{n} B_{n}\right\|_{2, \mu} \tag{4.2}
\end{equation*}
$$

Since $E \subset \mathbf{R}$ it is not hard to prove that all zeros $x_{1, n}, \ldots, x_{n, n}$ of B_{n} belong to the smallest interval $K(E)$ containing support supp $\mu=E$ of μ (see, for example, [1]). Using (1.5) with $q=2$ and $p=2 t$, we can write $\left|\varphi_{n}(\bar{\xi})\right|=\left|\varphi_{n}(\xi)\right|$ for $\xi \in \Gamma$. Since φ_{n} is outer, it follows from this that

$$
\begin{equation*}
\overline{\varphi_{n}(\bar{\xi})}=c \varphi_{n}(\xi), \quad \xi \in G, \quad|c|=1 \tag{4.3}
\end{equation*}
$$

As above we can assume that $\varphi_{n}(0)>0$. Then (4.3) yields $\varphi_{n}>0$ on $(-1,1)$.
By (2.10), for any function $g \in H_{1}(G)$ we get

$$
\int_{E} g(x) \varphi_{n}^{2}(x) B_{n}(x) d \mu(x)=m_{n}^{2} \int_{\Gamma} g(\xi) \overline{B_{n}(\xi)}\left|\varphi_{n}(\xi)\right|^{2 t}|d \xi|
$$

and (see (4.1))

$$
\begin{equation*}
\int_{\Gamma} g(\xi) \varphi_{n}^{2}(\xi) B_{n}(\xi) f(\xi) d \xi=m_{n}^{2} \int_{\Gamma} g(\xi) \overline{B_{n}(\xi)}\left|\varphi_{n}(\xi)\right|^{2 t}|d \xi| \tag{4.4}
\end{equation*}
$$

Since (4.4) is valid for any $g \in H_{1}(G)$, it follows (see, for example, [9]) that there exists a function $p \in H_{\infty}(G)$ such that

$$
\varphi_{n}^{2}(\xi) B_{n}(\xi) f(\xi)-m_{n}^{2} \overline{B_{n}(\xi)}\left|\varphi_{n}(\xi)\right|^{2 t}|d \xi| / d \xi=p(\xi)
$$

a.e. on Γ. From this we obtain that

$$
\begin{equation*}
\varphi_{n}^{2}(\xi) B_{n}^{2}(\xi)\left(f(\xi)-\frac{p(\xi)}{\varphi_{n}^{2}(\xi) B_{n}(\xi)}\right) d \xi=m_{n}^{2}\left|\varphi_{n}(\xi)\right|^{2 t}|d \xi| \tag{4.5}
\end{equation*}
$$

a.e. on Γ. Since $\left\|\varphi_{n}\right\|_{2 t}=1$, we can conclude from the last relation that

$$
\begin{equation*}
\left\|f-h_{n}\right\|_{s}=m_{n}^{2} \tag{4.6}
\end{equation*}
$$

where $h_{n}=P_{n} / B_{n}$ and $P_{n}=p / \varphi_{n}^{2}$. We remark that $h_{n} \in \mathscr{M}_{n, s}(G)$.

By the duality results (see [9]), (4.2) and (4.1), we get

$$
\begin{align*}
\Delta_{n, s} & =\inf _{B \in \mathscr{B}_{n}} \sup _{\varphi \in \mathbf{A}_{t}}\left|\int_{\Gamma}(\varphi B f)(\xi) d \xi\right| \\
& =\inf _{B \in \mathscr{B}_{n}} \sup _{\varphi \in \mathbf{A}_{t}}\left|\int_{E} \varphi(x) B(x) d \mu(x)\right| \geqslant m_{n}^{2} . \tag{4.7}
\end{align*}
$$

Therefore, by (4.6), (4.7), and the fact that the function $h_{n} \in \mathscr{M}_{n, s}(G)$, we get

$$
m_{n}^{2}=\Delta_{n, s}=\left\|f-h_{n}\right\|_{s} .
$$

References

[1] J.-E. Andersson, Best rational approximation to Markov functions, J. Approx. Theory 76 (1994) 219-232.
[2] L. Baratchart, V.A. Prokhorov, E.B. Saff, Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math. 1 (2001) 385-416.
[3] L. Baratchart, V.A. Prokhorov, E.B. Saff, Asymptotics for minimal Blaschke products and best L_{1} meromorphic approximants of Markov functions, Comput. Methods Function Theory 1 (2001) 501-520.
[4] J.M. Danskin, The Theory of Max-Min, Econometrics and Operations Research, Springer, Berlin, 1967.
[5] S.D. Fisher, Function Theory on Planar Domains, Wiley, New York, 1983.
[6] S.D. Fisher, Widths and optimal sampling in spaces of analytic functions, Constr. Approx. 12 (1996) 463-480.
[7] S.D. Fisher, M.I. Stessin, The n-width of the unit ball of H^{q}, J. Approx. Theory 67 (1991) 347-356.
[8] S.D. Fisher, M.I. Stessin, Corrigendum: the n-width of the unit ball of H^{q}, J. Approx. Theory 79 (1994) 167-168.
[9] John B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[10] A. Pinkus, N-widths in Approximation Theory, Springer, New York, 1985.
[11] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Heidelberg, 1997.

[^0]: *Corresponding author. Fax: +251-460-7969.
 E-mail addresses: baratcha@sophia.inria.fr (L. Baratchart), prokhoro@jaguar1.usouthal.edu (V.A. Prokhorov), esaff@math.vanderbilt.edu (E.B. Saff).
 ${ }^{1}$ The research of these authors was supported, in part, by NSF-INRIA collaborative research Grant INT-9732631 as well as (for E.B. Saff) by NSF research Grant DMS-0296026.

