

Available at www.**Elsevier**Mathematics.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 126 (2004) 40-51

http://www.elsevier.com/locate/jat

# On Blaschke products associated with *n*-widths

L. Baratchart,<sup>a,1</sup> V.A. Prokhorov,<sup>b,\*</sup> and E.B. Saff<sup>c,1</sup>

<sup>a</sup> INRIA, 2004 Route des Lucioles B.P. 93, 06902 Sophia Antipolis Cedex, France <sup>b</sup> Department of Mathematics and Statistics, the University of South Alabama, Mobile, Alabama 36688-0002, USA

<sup>c</sup> Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

Received 17 April 2003; accepted in revised form 17 November 2003

Communicated by Allan Pinkus

### Abstract

Let *E* be a closed subset of the open unit disk  $G = \{z : |z| < 1\}$ , and let  $\mu$  be a positive Borel measure with support supp  $\mu = E$ . Denote by  $\mathbf{A}_p$  the restriction on *E* of the closed unit ball of the Hardy space  $H_p(G)$ ,  $1 \le p \le \infty$ . In this paper we investigate orthogonality properties of the extremal functions associated with the Kolmogorov, Gelfand, and linear *n*-widths of  $\mathbf{A}_p$  in  $L_q(\mu, E)$ ,  $1 \le q < \infty$ ,  $q \le p$ .

© 2003 Elsevier Inc. All rights reserved.

Keywords: n-widths; Blaschke product; Orthogonal polynomial; Meromorphic approximation

#### 1. Introduction

#### 1.1. Overview

Let  $G = \{z : |z| < 1\}$  be the open unit disk in the complex plane C and let  $\Gamma = \{z : |z| = 1\}$ . We assume that the circle  $\Gamma$  is positively oriented with respect to G. Let E be a compact subset of G, and let  $\mu$  be a finite positive Borel measure with support supp  $\mu = E$ . We further assume that E contains infinitely many points.

<sup>\*</sup>Corresponding author. Fax: +251-460-7969.

*E-mail addresses:* baratcha@sophia.inria.fr (L. Baratchart), prokhoro@jaguar1.usouthal.edu (V.A. Prokhorov), esaff@math.vanderbilt.edu (E.B. Saff).

<sup>&</sup>lt;sup>1</sup>The research of these authors was supported, in part, by NSF-INRIA collaborative research Grant INT-9732631 as well as (for E.B. Saff) by NSF research Grant DMS-0296026.

Denote by  $H_p(G)$ ,  $1 \le p \le \infty$ , the Hardy space of those analytic functions g on G such that  $|g|^p$  has a harmonic majorant there. As is well known, such functions have nontangential boundary values a.e. on  $\Gamma$  that establish a one-to-one correspondence between  $H_p(G)$  and the closed subspace of  $L_p(\Gamma)$  consisting of functions whose Fourier coefficients of strictly negative index do vanish; a function in  $H_p(G)$  is recovered from its boundary values through a Cauchy as well as a Poisson integral. We refer the reader to [9] for details on Hardy spaces, and we merely recall here a few facts that will be of relevance to us.

By a theorem of Szegő, we have that  $\log |g| \in L_1(\Gamma)$  whenever  $g \in H_p(G)$  is not the zero function. This entails that a  $H_p(G)$ -function is uniquely defined by the values it assumes on a subset of  $\Gamma$  of positive Lebesgue measure. Conversely, whenever  $\rho \in L_p(\Gamma)$  is a positive function such that  $\log \rho \in L_1(\Gamma)$ , the function

$$E_{\rho}(z) = \exp\left\{\frac{1}{2\pi} \int_{\Gamma} \frac{\xi + z}{\xi - z} \log \rho(\xi) \, d|\xi|\right\}, \quad z \in G,$$

$$(1.1)$$

lies in  $H_{\rho}(G)$  and has modulus  $\rho$  a.e. on  $\Gamma$ . This  $E_{\rho}$  is called the normalized *outer* function associated with  $\rho$ , the normalization being that  $E_{\rho}(0) > 0$ . More generally, a function is said to be *outer* in  $H_{\rho}(G)$  if it is of the form  $cE_{\rho}$  with *c* a unimodular constant. Obviously, an outer function has no zero in *G*. Granted the normalization condition, the outer function  $E_{\rho}$  is characterized by two facts, namely:

- (i)  $|E_{\rho}| = \rho$  a.e. on  $\Gamma$ ,
- (ii) among all  $H_p(G)$ -functions that satisfy (i),  $E_\rho$  is largest-in-modulus pointwise on G.

A particular type of  $H_{\infty}(G)$ -functions will also be important to us, namely *finite Blaschke products*. These are the rational functions that are analytic in G and of unit modulus on  $\Gamma$ ; they assume the form  $q/q^*$ , where q is an algebraic polynomial whose roots lie in G and where  $q^*$  indicates the *reciprocal polynomial* given by  $q^*(z) = z^n \overline{q(1/\overline{z})}$  if n is the degree of q. The integer n is also called the degree of the Blaschke product, and the latter is called *normalized* if q is monic. For any positive integer n, we let  $\mathscr{B}_n$  denote the class of normalized Blaschke products of degree n; upon splitting q into linear factors in the previous definition, we see that each  $B \in \mathscr{B}_n$  can be uniquely written as

$$B(z) = \prod_{k=1}^{n} \frac{z - \xi_k}{1 - \bar{\xi}_k z}, \quad \xi_k \in G.$$
 (1.2)

Let  $A_p$  be the restriction on E of the closed unit ball of the Hardy space  $H_p(G)$ . Fisher and Stessin [7,8] proved that in two important cases: when  $1 \leq q \leq p < \infty$ , or when  $1 \leq q < \infty$ , p = 2,

$$d^{n}(\mathbf{A}_{p}, L_{q}(\mu, E)) = d_{n}(\mathbf{A}_{p}, L_{q}(\mu, E)) = \delta_{n}(\mathbf{A}_{p}, L_{q}(\mu, E))$$
$$= \inf_{B \in \mathscr{B}_{n}} \sup_{\varphi \in \mathbf{A}_{n}} ||\varphi B||_{q,\mu},$$

where  $d^n$ ,  $d_n$ , and  $\delta_n$  are the Kolmogorov, Gelfand and linear *n*-widths of  $\mathbf{A}_p$  in the space  $L_q(\mu, E)$  (see, for example, [10]), and  $|| \cdot ||_{q,\mu}$  is the norm in the space  $L_q(\mu, E)$ .

Let 
$$1 \leq q < \infty$$
,  $1 \leq p \leq \infty$ . Set  
 $m_n = m_n(p, q, \mu) = \inf_{B \in \mathscr{B}_n} \sup_{\varphi \in \mathbf{A}_n} ||\varphi B||_{q,\mu}.$ 
(1.3)

In this paper we investigate orthogonal properties of the extremal functions  $\varphi_n$  and  $B_n$  which attain the value  $m_n$ :

$$m_n = ||\varphi_n B_n||_{q,\mu}.\tag{1.4}$$

That  $\varphi_n$  and  $B_n$  indeed exist follows from the fact that the "inf-sup" in (1.3) is certainly attained if the infimization is extended to Blaschke product of degree *at most n*, because the restriction of this set to *E* is compact in  $L_{\infty}(E)$  and so is  $\mathbf{A}_p$  in  $L_q(\mu, E)$ ; but the "inf" is obviously attained on  $\mathcal{B}_n$ , because each elementary factor in (1.2) has modulus strictly less than 1 on *E*. Necessarily  $\varphi_n$  is outer of  $L_p(\Gamma)$ -norm exactly 1, otherwise it could not meet the "sup" in (1.3). Clearly  $\varphi_n \equiv 1$  for  $p = \infty$ , and for  $1 \leq p < \infty$  is known to satisfy the following equation:

$$m_n^q |\varphi_n(\xi)|^p = \frac{1}{2\pi} \int_E \frac{1 - |x|^2}{|\xi - x|^2} |(\varphi_n B_n)(x)|^q \, d\mu(x), \quad \xi \in \Gamma,$$
(1.5)

see [7, Proposition 1]. One consequence is that  $|\varphi_n|$  extends continuously on  $\Gamma$  (see [6,7]). Actually, since  $|\varphi_n|$  is strictly positive and  $C^1$ -smooth on  $\Gamma$  by (1.5), so is  $\log |\varphi_n|$  whose conjugate function Arg  $\varphi_n$  is then continuous, and therefore we see upon taking the exponential that the outer function  $\varphi_n$  itself is continuous on  $\Gamma$ . If  $q \leq p$  then  $\varphi_n$  is uniquely determined by  $B_n$  up to unimodular scalar multiples, but this may fail if p < q (it is nevertheless true if *E* is hyperbolically small, see [7]). To avoid trivial cases of nonuniqueness, we assume throughout without loss of generality that  $\varphi_n(0) > 0$ .

In Sections 2 and 3 we establish orthogonality properties of the extremal functions  $\varphi_n$  and  $B_n$  when  $q \leq p$ . The authors do not know whether analogous results hold when p < q. In Section 4, a connection with meromorphic approximation is investigated.

#### 1.2. Notation

Above and thereafter,  $L_p(\Gamma)$ ,  $1 \le p \le \infty$ , stands for the Lebesgue space of functions  $\varphi$  measurable on  $\Gamma$ , with the norm

$$||\varphi||_{p} = \left(\int_{\Gamma} |\varphi(\xi)|^{p} |d\xi|\right)^{1/p} \quad \text{if } 1 \leq p < \infty$$

$$(1.6)$$

and

$$\|\varphi\|_{\infty} = \operatorname{ess\,sup}_{\Gamma} |\varphi(\xi)| \quad \text{if } p = \infty.$$

42

As well,  $L_q(\mu, E)$ ,  $1 \leq q < \infty$ , is the Lebesgue space of functions  $\varphi$  on E with the norm

$$||\varphi||_{q,\mu} = \left(\int_E |\varphi(x)|^q \, d\mu(x)\right)^{1/q} < \infty.$$

Finally, for  $\sigma$  a positive Borel measure with support supp  $\sigma = E$ , we denote by  $J: H_2(G) \rightarrow L_2(\sigma, E)$  the *embedding* operator. The operator J is given by restricting an element  $\varphi \in H_2(G)$  to  $E: J\varphi = \varphi_{|E}$ . Let  $J^*: L_2(\sigma, E) \to H_2(G)$  be the adjoint of J. It is easily verified that for  $\varphi \in H_2(G)$ 

$$(J^*J)(\phi)(z) = \frac{1}{2\pi} \int_E \frac{\phi(x)}{1 - z\bar{x}} d\sigma(x), \quad |z| < 1$$
(1.7)

(see, for example, [5]).

## **2.** Orthogonality properties of $\varphi_n$ and $B_n$

Fix  $1 \leq q < \infty$ ,  $1 \leq p < \infty$ , and a positive integer *n*. It is not hard to see that (1.5) is equivalent to the following relation:

$$\int_{E} u(x) \left| (\varphi_n B_n)(x) \right|^q d\mu(x) = m_n^q \int_{\Gamma} u(\xi) \left| \varphi_n(\xi) \right|^p |d\xi|,$$
(2.1)

where u is any function harmonic on G and continuous on  $\overline{G}$ . Equality (2.1) implies that

$$(|(\varphi_n B_n)(x)|^q d\mu(x))^*(\xi) = m_n^q |\varphi_n(\xi)|^p |d\xi|, \quad \xi \in \Gamma,$$

where  $(|\varphi_n B_n|^q d\mu)^*$  is the balayage of  $|\varphi_n B_n|^q d\mu$  on  $\Gamma$  (see, for example, [11]). It follows from (2.1) that for any  $g \in H_1(G)$ 

$$\int_{E} g(x) |(\varphi_n B_n)(x)|^q d\mu(x) = m_n^q \int_{\Gamma} g(\xi) |\varphi_n(\xi)|^p |d\xi|.$$
(2.2)

We represent  $B_n(x)$  in the form  $B_n(x) = w_n(x)/w_n^*(x)$ , where

$$w_n(x) = \prod_{k=1}^n (x - x_{k,n}), \quad w_n^*(x) = \prod_{k=1}^n (1 - \bar{x}_{k,n}x),$$

and  $x_{1,n}, x_{2,n}, ..., x_{n,n}$  are zeros of  $B_n, x_{k,n} \in G, k = 1, ..., n$ . W

We now prove that for 
$$1 \leq q \leq p < \infty$$

$$\int_{E} \left( \frac{x^{k}}{w_{n}^{*}(x)} \overline{B_{n}(x)} - \overline{\left( \frac{x^{n-k} w_{n}(x)}{(w_{n}^{*}(x))^{2}} \right)} B_{n}(x) \right) |\varphi_{n}(x)|^{q} |B_{n}(x)|^{q-2} d\mu(x) = 0,$$
  

$$k = 0, \dots, n-1.$$
(2.3)

For  $B \in \mathscr{B}_n$  and  $\varphi \in \mathbf{A}_p$ , we set

$$\Psi(B,\varphi) \triangleq \int_E |(\varphi B)(x)|^q \, d\mu(x)$$

and we denote by  $\varphi_B$  the unique function (up to unimodular scalar multiples) in  $\mathbf{A}_p$  such that

$$\Psi(B,\varphi_B) = \sup_{\varphi \in \mathbf{A}_p} \Psi(B,\varphi).$$
(2.4)

Necessarily  $\varphi_B$  is outer, so we normalize it as usual by setting  $\varphi_B(0) > 0$ . We write a generic  $B \in \mathscr{B}_n$  as:

$$B(x) = \frac{\alpha_0 + \alpha_1 x + \dots + \alpha_{n-1} x^{n-1} + x^n}{\bar{\alpha}_0 x^n + \bar{\alpha}_1 x^{n-1} + \dots + \bar{\alpha}_{n-1} x + 1}, \quad \alpha_j \in \mathbb{C},$$

and we single out  $B_n$  to be

$$B_n(x) = \frac{a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n}{\bar{a}_0 x^n + \bar{a}_1 x^{n-1} + \dots + \bar{a}_{n-1} x + 1}$$

where the  $a_i$  are the coefficients of  $w_n$ .

When *B* ranges over  $\mathscr{B}_n$ , then  $(\alpha_0, ..., \alpha_{n-1})$  ranges over an open subset  $\Omega$  of  $\mathbb{C}^n$ , and this way we coordinatize  $\mathscr{B}_n$ . Clearly,  $\Psi$  is jointly continuous with respect to  $(\alpha_j)_{0 \le j \le n-1} \in \Omega$  and  $\varphi \in \mathbf{A}_p$  when the latter is endowed with the topology induced by the sup-norm on *E*. Observe also that  $\mathbf{A}_p$  is compact for that topology by the Cauchy formula and the weak-compactness of balls in  $H_p(G)$ . Moreover,  $\Psi$  has partial derivatives with respect to the real and imaginary parts of the  $\alpha_j$  that are likewise jointly continuous with respect to  $(\alpha_j)_{0 \le j \le n-1}$  and  $\varphi$ . Since  $\varphi_B$  is the unique argument of the maximum in (2.4), it now follows from [4, Chapter III, Theorem 1] that  $\Psi(B, \varphi_B)$  in turn has partial derivatives with respect to the real and imaginary parts of the  $\alpha_j$ , given by

$$\frac{\partial \Psi(B,\varphi_B)}{\partial \operatorname{Re}(\alpha_j)} = \frac{\partial \Psi(B,\varphi)}{\partial \operatorname{Re}(\alpha_j)}\Big|_{\varphi=\varphi_B}, \quad \frac{\partial \Psi(B,\varphi_B)}{\partial \operatorname{Re}(\alpha_j)} = \frac{\partial \Psi(B,\varphi)}{\partial \operatorname{Re}(\alpha_j)}\Big|_{\varphi=\varphi_B}$$

Because  $B \mapsto \Psi(B, \varphi_B)$  meets a minimum on  $\mathscr{B}_n$  at  $B = B_n$ , or in coordinates on  $\Omega$  at  $\alpha_j = a_j$ ,  $0 \le j \le n - 1$ , the above partial derivatives must vanish at this point and writing that

$$\left(\frac{\partial \Psi(B,\varphi_B)}{\partial \operatorname{Re}(\alpha_k)} - i\frac{\partial \Psi(B,\varphi_B)}{\partial \operatorname{Im}(\alpha_k)}\right)\Big|_{B=B_n} = 0,$$

while taking into account that  $\varphi_{B_n} = \varphi_n$ , yields (2.3) upon differentiating under the integral sign.

Let  $E^{-1}$  be the reflection of E in the unit circle and let D be the component of  $\overline{\mathbb{C}} \setminus E^{-1}$  that contains the unit disk G. We have the following theorem (see [2] for q = 2 and  $E \subset (-1, 1)$ ).

**Theorem 1.** The function  $\varphi_n^{p/2}$  can be extended analytically to D, and satisfies the equations

$$m_n^q(\varphi_n^{p/2})(\xi) = \frac{1}{2\pi} \int_E \frac{|(\varphi_n B_n)(x)|^q}{(1 - \xi \bar{x})\overline{\varphi_n^{p/2}(x)}} d\mu(x), \quad \xi \in D, \quad 1 \le q < \infty, 1 \le p < \infty$$
(2.5)

and

$$m_n^q(B_n\varphi_n^{p/2})(\xi) = \frac{1}{2\pi} \int_E \frac{|(\varphi_n B_n)(x)|^q}{(1-\xi\bar{x})B_n(x)\varphi_n^{p/2}(x)} d\mu(x), \quad \xi \in D, \ 1 \le q \le p < \infty.$$
(2.6)

The following orthogonality relations are valid:

$$\int_{E} \frac{x^{k} w_{n}(x)}{|w_{n}^{*}(x)|^{2} \varphi_{n}^{p/2}(x)} |\varphi_{n}(x)|^{q} |B_{n}(x)|^{q-2} d\mu(x) = 0, \ k = 0, \dots, n-1,$$

$$1 \leq q \leq p < \infty.$$
(2.7)

**Proof.** Let  $\varphi$  be any function in  $H_2(G)$ , and let  $g = \varphi/\varphi_n^{p/2}$ . Here and in what follows we take that branch of the (p/2)th root that is positive on the positive part of the real line. By (2.2), we can write

$$\int_E \varphi(x)\overline{\varphi_n^{p/2}(x)}|\varphi_n(x)|^{q-p} |B_n(x)|^q d\mu(x) = m_n^q \int_{\Gamma} \varphi(\xi)\overline{\varphi_n^{p/2}(\xi)}|d\xi|.$$

Therefore,

$$J^*J(\varphi_n^{p/2}) = m_n^q \varphi_n^{p/2},$$

where  $J: H_2(G) \to L_2(|\varphi_n|^{q-p}|B_n|^q d\mu, E)$  is the embedding operator. From this, on the basis of formula (1.7) where  $d\sigma = |\varphi_n|^{q-p}|B_n|^q d\mu$ , we obtain (2.5).

We now can rewrite (2.3) in the form

$$\int_{E} \frac{x^{k}}{w_{n}(x)} |(\varphi_{n}B_{n})(x)|^{q} d\mu(x) = \int_{E} \left(\frac{\overline{x^{n-k}}}{w_{n}^{*}(x)}\right) |(\varphi_{n}B_{n})(x)|^{q} d\mu(x).$$

By (2.2),

$$\int_{E} \left( \frac{\overline{x^{n-k}}}{w_{n}^{*}(x)} \right) \left| (\varphi_{n} B_{n})(x) \right|^{q} d\mu(x) = m_{n}^{q} \int_{\Gamma} \left( \frac{\overline{\xi^{n-k}}}{w_{n}^{*}(\xi)} \right) \left| \varphi_{n}(\xi) \right|^{p} \left| d\xi \right|$$
$$= m_{n}^{q} \int_{\Gamma} \frac{\overline{\xi^{k}}}{w_{n}(\xi)} \left| \varphi_{n}(\xi) \right|^{p} \left| d\xi \right|.$$
(2.8)

Hence, we have

$$\int_{E} \frac{x^{k}}{w_{n}(x)} |(\varphi_{n}B_{n})(x)|^{q} d\mu(x) = m_{n}^{q} \int_{\Gamma} \frac{\xi^{k}}{w_{n}(\xi)} |\varphi_{n}(\xi)|^{p} |d\xi|.$$
(2.9)

By (2.2) and (2.9), for any  $g \in H_1(G)$ 

$$\int_{E} \frac{g(x)}{w_n(x)} |(\varphi_n B_n)(x)|^q \, d\mu(x) = m_n^q \int_{\Gamma} \frac{g(\xi)}{w_n(\xi)} |\varphi_n(\xi)|^p |d\xi|.$$
(2.10)

Letting

$$g(x) = \frac{w_n^*(x)}{(1 - \bar{t}x)\varphi_n^{p/2}(x)}, \quad |t| < 1,$$

we get

$$\frac{1}{2\pi} \int_{E} \frac{|(\varphi_{n}B_{n})(x)|^{q}}{(1-\bar{t}x)B_{n}(x)\varphi_{n}^{p/2}(x)} d\mu(x) = \frac{m_{n}^{q}}{2\pi} \int_{\Gamma} \frac{\overline{B_{n}(\xi)\varphi_{n}^{p/2}(\xi)}|d\xi|}{(1-\bar{t}\xi)} = m_{n}^{q} \frac{1}{2\pi i} \int_{\Gamma} \frac{B_{n}(\xi)\varphi_{n}^{p/2}(\xi)d\xi}{\xi-t} = m_{n}^{q} \overline{B_{n}(t)\varphi_{n}^{p/2}(t)},$$

and, then, (2.6).

By (2.10), for  $g = x^k / \varphi_n^{p/2}$ , k = 0, ..., n - 1, we obtain that

$$\int_{E} \frac{x^{k}}{w_{n}(x)} \frac{|(\varphi_{n}B_{n})(x)|^{q}}{\varphi_{n}^{p/2}(x)} d\mu(x) = m_{n}^{q} \int_{\Gamma} \frac{\xi^{k} \varphi_{n}^{p/2}(\xi) |d\xi|}{w_{n}(\xi)}$$
$$= m_{n}^{q} \overline{\int_{\Gamma} \frac{\xi^{n-k} \varphi_{n}^{p/2}(\xi) |d\xi|}{w_{n}^{*}(\xi)}} = m_{n}^{q} \overline{\int_{\Gamma} \frac{\xi^{n-k-1} \varphi_{n}^{p/2}(\xi) d\xi}{iw_{n}^{*}(\xi)}};$$

consequently,

$$\int_E \frac{x^k}{w_n(x)} \frac{|(\varphi_n B_n)(x)|^q}{\varphi_n^{p/2}(x)} d\mu(x) = 0, \quad k = 0, \dots, n-1,$$

and (2.7) follows.  $\Box$ 

## 3. The case $p = \infty$

Let  $1 \leq q < \infty$ ,  $p = \infty$ , and let *n* be a positive integer. Since in this case  $\sup_{\varphi \in A_{\infty}} ||\varphi B||_{q,\mu} = ||B||_{q,\mu}, \quad B \in \mathscr{B}_n,$ 

we can rewrite (1.3) and (1.4) in the form

$$m_n = \inf_{B \in \mathscr{B}_n} ||B||_{q,\mu} = ||B_n||_{q,\mu}.$$
(3.1)

Let us consider the following function:

$$g_n(\xi) = \frac{1}{2\pi} \int_E \frac{1 - |x|^2}{|\xi - x|^2} B_n(x) |^q \, d\mu(x), \quad \xi \in \Gamma.$$
(3.2)

Let u be any harmonic function on G that is continuous on the closed disk  $\overline{G}$ . By (3.2),

$$\int_{E} u(x)|B_n(x)|^q d\mu(x) = \int_{\Gamma} u(\xi)g_n(\xi)|d\xi|,$$
(3.3)

and consequently

$$(|B_n|^q d\mu)^*(\xi) = g_n(\xi)|d\xi|, \quad \xi \in \Gamma,$$

where  $(|B_n|^q d\mu)^*$  is the balayage of  $|B_n|^q d\mu$  on  $\Gamma$ . In particular, we have that

$$||g_n||_{L_1(\Gamma)} = m_n^q.$$
(3.4)

Consider now the function  $\phi_n(z)$  defined on G by

$$\phi_n(z) = \exp\left(\frac{1}{4\pi} \int_{\Gamma} \frac{\xi + z}{\xi - z} \log |g_n(\xi)/m_n^q| d\xi|\right).$$

Because  $g_n$  is strictly positive and continuous on  $\Gamma$  as is apparent from (3.2), the function  $\phi_n$  is normalized-outer in  $H_{\infty}(G)$  by (1.1) and, from the properties of such functions (as described in the introduction), together with (3.4),  $\phi_n$  satisfies the following three properties:

- (a)  $\phi_n$  is nonvanishing in G;
- (b)  $||\phi_n||_2 = 1$  and  $\phi_n(0) > 0$ ;
- (c)  $\phi_n$  satisfies on  $\Gamma$  the equation

$$g_n(\xi) = m_n^q |\phi_n(\xi)|^2.$$
(3.5)

Moreover, since  $g_n$  is  $C^1$ -smooth and non-vanishing on  $\Gamma$  by (3.2), so is  $|\phi_n|$  and therefore  $\phi_n$  itself is continuous on  $\Gamma$ .

With the aid of  $\phi_n$  we shall prove the following version of Theorem 1 for the case when  $p = \infty$  (see [3] for q = 2 and  $E \subset (-1, 1)$ ).

**Theorem 2.** Let  $p = \infty$  and  $1 \le q < \infty$ . The function  $\phi_n$  can be extended analytically to *D*, and satisfies the equations

$$m_n^q \phi_n(\xi) = \frac{1}{2\pi} \int_E \frac{|B_n(x)|^q \, d\mu(x)}{(1 - \xi \bar{x}) \phi_n(x)}, \quad \xi \in D$$
(3.6)

and

$$m_n^q(\phi_n B_n)(\xi) = \frac{1}{2\pi} \int_E \frac{|B_n(x)|^q \, d\mu(x)}{(1 - \xi \bar{x}) \overline{\phi_n(x)} B_n(x)}, \quad \xi \in D.$$
(3.7)

The following orthogonality relations are valid:

$$\int_{E} \frac{x^{k} \overline{w_{n}(x)}}{\left|w_{n}^{*}(x)\right|^{2} \phi_{n}(x)} \left|B_{n}(x)\right|^{q-2} d\mu(x) = 0, \quad k = 0, \dots, n-1.$$
(3.8)

**Proof.** Let g be any function in  $H_1(G)$ . Using (3.2), (3.3), and (3.5), we can write

$$\int_{E} g(x)|B_{n}(x)|^{q} d\mu(x) = m_{n}^{q} \int_{\Gamma} g(\xi)|\phi_{n}(\xi)|^{2}|d\xi|.$$
(3.9)

It follows from the last formula that

$$J^*J(\phi_n) = m_n^q \phi_n, \tag{3.10}$$

where  $J: H_2(G) \to L_2(|B_n|^q/|\phi_n|^2 d\mu, E)$  is the embedding operator. By (3.10) and (1.7), we get (3.6).

Since for any Blaschke product  $B \in \mathscr{B}_n$ 

$$\int_{E} |B(x)|^{q} d\mu(x) \ge \int_{E} |B_{n}(x)|^{q} d\mu(x),$$
(3.11)

it follows that for k = 0, ..., n - 1,

$$\int_{E} \left( \frac{x^{k}}{w_{n}^{*}(x)} \overline{B_{n}}(x) - \left( \frac{\overline{x^{n-k} w_{n}(x)}}{(w_{n}^{*}(x))^{2}} \right) B_{n}(x) \right) |B_{n}(x)|^{q-2} d\mu(x) = 0.$$
(3.12)

We can see from (3.12) and (3.9) that

$$\int_{E} \frac{x^{k}}{w_{n}(x)} |B_{n}(x)|^{q} d\mu(x)$$

$$= \int_{E} \left( \frac{x^{n-k}}{w_{n}^{*}(x)} \right) |B_{n}(x)|^{q} d\mu(x) = m_{n}^{q} \int_{\Gamma} \left( \frac{\xi^{n-k}}{w_{n}^{*}(\xi)} \right) |\phi_{n}(\xi)|^{2} |d\xi|$$

$$= m_{n}^{q} \int_{\Gamma} \frac{\xi^{k}}{w_{n}(\xi)} |\phi_{n}(\xi)|^{2} |d\xi|.$$
(3.13)

By (3.9) and (3.13), for any  $g \in H_1(G)$ 

$$\int_{E} \frac{g(x)}{w_n(x)} |B_n(x)|^q \, d\mu(x) = m_n^q \int_{\Gamma} \frac{g(\xi)}{w_n(\xi)} |\phi_n(\xi)|^2 |d\xi|.$$
(3.14)

Letting

$$g(x) = \frac{w_n^*(x)}{(1 - \bar{t}x)\phi_n(x)}, |t| < 1,$$

we get

$$\frac{1}{2\pi} \int_E \frac{|B_n(x)|^q}{(1-\bar{t}x)B_n(x)\phi_n(x)} = \frac{m_n^q}{2\pi} \int_{\Gamma} \frac{\overline{B_n(\xi)\phi_n(\xi)}|d\xi|}{(1-\bar{t}\xi)},$$

$$m_n^q \frac{1}{2\pi i} \int_{\Gamma} \frac{B_n(\xi)\phi_n(\xi) d\xi}{\xi - t} = m_n^q \overline{B_n(t)\phi_n(t)}$$

and, then, (3.7).

By (3.14), for  

$$g = \frac{x^k}{\phi_n}, k = 0, ..., n - 1$$

we obtain that

$$\int_{E} \frac{x^{k}}{w_{n}(x)} \frac{|B_{n}(x)|^{q}}{\phi_{n}(x)} d\mu(x) = m_{n}^{q} \int_{\Gamma} \frac{\xi^{k} \overline{\phi_{n}(\xi)} |d\xi|}{w_{n}(\xi)}$$
$$= m_{n}^{q} \overline{\int_{\Gamma} \frac{\xi^{n-k} \phi_{n}(\xi) |d\xi|}{w_{n}^{*}(\xi)}} = m_{n}^{q} \overline{\int_{\Gamma} \frac{\xi^{n-k-1} \phi_{n}(\xi) d\xi}{iw_{n}^{*}(\xi)}}$$

consequently,

$$\int_E \frac{x^k}{w_n(x)} \frac{|B_n(x)|^q}{\phi_n(x)} d\mu(x) = 0, \quad k = 0, \dots, n-1,$$

and (3.8) follows.  $\Box$ 

#### 4. Connection with meromorphic approximation

For q = 2 and  $E \subset (-1, 1)$  there is an important connection between the best meromorphic approximation error of the Markov function

$$f(z) = \frac{1}{2\pi i} \int_{E} \frac{d\mu(x)}{z - x}$$
(4.1)

and the extremal constant  $m_n$ .

Let  $\mathcal{M}_{n,s}(G)$ ,  $1 \leq s \leq \infty$ , be the class of all meromorphic functions on G that can be represented in the form h = P/Q, where P belongs to the Hardy space  $H_s(G)$  and Q is a polynomial of degree at most n,  $Q \neq 0$ . Denote by

$$\Delta_{n,s} = \inf_{h \in \mathscr{M}_{n,s}(G)} ||f - h||_s$$

the error in best approximation of the Markov function f in the space  $L_s(\Gamma)$  by meromorphic functions in the class  $\mathcal{M}_{n,s}(G)$ .

Let 1/s + 1/t = 1. The following theorem describes a connection between  $\Delta_{n,s}$  and the extremal constant  $m_n(p, q, \mu)$  with q = 2 and p = 2t (see [1,2]).

**Theorem 3.** (i) We have

$$\Delta_{n,s}=m_n^2(2t,2,\mu);$$

(ii) there exists a best meromorphic approximant  $h_n$  in  $\mathcal{M}_{n,s}(G)$  to the Markov function f in the space  $L_s(\Gamma)$  such that

$$\Delta_{n,s} = ||f - h_n||_s$$

and

 $h_n = P_n / B_n,$ 

where  $P_n \in H_s(G)$  and  $B_n$  is a solution of the extremal problem (1.3) with q = 2 and p = 2t;

(iii) the function  $h_n$  satisfies a.e. on  $\Gamma$  the following equations:

$$(\varphi_n^2 B_n^2)(\xi)(f-h_n)(\xi) d\xi = \Delta_{n,s} |\varphi_n(\xi)|^{2t} |d\xi| \quad \text{if } 1 < s \leq \infty,$$

and

$$(B_n^2(f-h_n))(\xi) d\xi = |(f-h_n)(\xi)||d\xi|$$
 if  $s = 1$ .

**Proof.** We shall show that this theorem follows easily from results of Sections 2 and 3. Without loss of generality we assume that  $1 < s \le \infty$ . Let

$$m_n = m_n(2t, 2, \mu) = \inf_{B \in \mathscr{B}_n} \sup_{\varphi \in \mathbf{A}_{2t}} ||\varphi B||_{2,\mu} = ||\varphi_n B_n||_{2,\mu}.$$
(4.2)

Since  $E \subset \mathbf{R}$  it is not hard to prove that all zeros  $x_{1,n}, \ldots, x_{n,n}$  of  $B_n$  belong to the smallest interval K(E) containing support supp  $\mu = E$  of  $\mu$  (see, for example, [1]). Using (1.5) with q = 2 and p = 2t, we can write  $|\varphi_n(\bar{\xi})| = |\varphi_n(\xi)|$  for  $\xi \in \Gamma$ . Since  $\varphi_n$  is outer, it follows from this that

$$\overline{\varphi_n(\bar{\xi})} = c\varphi_n(\xi), \quad \xi \in G, \quad |c| = 1.$$
(4.3)

As above we can assume that  $\varphi_n(0) > 0$ . Then (4.3) yields  $\varphi_n > 0$  on (-1, 1). By (2.10), for any function  $g \in H_1(G)$  we get

$$\int_E g(x)\varphi_n^2(x)B_n(x)\,d\mu(x) = m_n^2\,\int_\Gamma\,g(\xi)\overline{B_n(\xi)}|\varphi_n(\xi)|^{2t}|d\xi$$

and (see (4.1))

$$\int_{\Gamma} g(\xi)\varphi_n^2(\xi)B_n(\xi)f(\xi)\,d\xi = m_n^2 \int_{\Gamma} g(\xi)\overline{B_n(\xi)}|\varphi_n(\xi)|^{2t}|d\xi|.$$
(4.4)

Since (4.4) is valid for any  $g \in H_1(G)$ , it follows (see, for example, [9]) that there exists a function  $p \in H_{\infty}(G)$  such that

$$\varphi_n^2(\xi)B_n(\xi)f(\xi) - m_n^2 \overline{B_n(\xi)} |\varphi_n(\xi)|^{2t} |d\xi|/d\xi = p(\xi)$$

a.e. on  $\Gamma$ . From this we obtain that

$$\varphi_n^2(\xi) B_n^2(\xi) \left( f(\xi) - \frac{p(\xi)}{\varphi_n^2(\xi) B_n(\xi)} \right) d\xi = m_n^2 |\varphi_n(\xi)|^{2t} |d\xi|$$
(4.5)

a.e. on  $\Gamma$ . Since  $||\varphi_n||_{2t} = 1$ , we can conclude from the last relation that

$$||f - h_n||_s = m_n^2, (4.6)$$

where  $h_n = P_n/B_n$  and  $P_n = p/\varphi_n^2$ . We remark that  $h_n \in \mathcal{M}_{n,s}(G)$ .

50

By the duality results (see [9]), (4.2) and (4.1), we get

$$\Delta_{n,s} = \inf_{B \in \mathscr{B}_n} \sup_{\varphi \in \mathbf{A}_t} \left| \int_{\Gamma} (\varphi B f)(\xi) \, d\xi \right|$$
  
= 
$$\inf_{B \in \mathscr{B}_n} \sup_{\varphi \in \mathbf{A}_t} \left| \int_{E} \varphi(x) B(x) \, d\mu(x) \right| \ge m_n^2.$$
(4.7)

Therefore, by (4.6), (4.7), and the fact that the function  $h_n \in \mathcal{M}_{n,s}(G)$ , we get

$$m_n^2 = \Delta_{n,s} = ||f - h_n||_s. \quad \Box$$

#### References

- [1] J.-E. Andersson, Best rational approximation to Markov functions, J. Approx. Theory 76 (1994) 219–232.
- [2] L. Baratchart, V.A. Prokhorov, E.B. Saff, Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math. 1 (2001) 385–416.
- [3] L. Baratchart, V.A. Prokhorov, E.B. Saff, Asymptotics for minimal Blaschke products and best  $L_1$  meromorphic approximants of Markov functions, Comput. Methods Function Theory 1 (2001) 501–520.
- [4] J.M. Danskin, The Theory of Max–Min, Econometrics and Operations Research, Springer, Berlin, 1967.
- [5] S.D. Fisher, Function Theory on Planar Domains, Wiley, New York, 1983.
- [6] S.D. Fisher, Widths and optimal sampling in spaces of analytic functions, Constr. Approx. 12 (1996) 463–480.
- [7] S.D. Fisher, M.I. Stessin, The *n*-width of the unit ball of  $H^q$ , J. Approx. Theory 67 (1991) 347–356.
- [8] S.D. Fisher, M.I. Stessin, Corrigendum: the *n*-width of the unit ball of  $H^q$ , J. Approx. Theory 79 (1994) 167–168.
- [9] John B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [10] A. Pinkus, N-widths in Approximation Theory, Springer, New York, 1985.
- [11] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Heidelberg, 1997.