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Abstract

Let E be a closed subset of the open unit disk G ¼ fz : jzjo1g; and let m be a positive Borel

measure with support supp m ¼ E: Denote by Ap the restriction on E of the closed unit ball of

the Hardy space HpðGÞ; 1pppN: In this paper we investigate orthogonality properties of the

extremal functions associated with the Kolmogorov, Gelfand, and linear n-widths of Ap in

Lqðm;EÞ; 1pqoN; qpp:

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Overview

Let G ¼ fz : jzjo1g be the open unit disk in the complex plane C and let G ¼
fz : jzj ¼ 1g: We assume that the circle G is positively oriented with respect to G: Let
E be a compact subset of G; and let m be a finite positive Borel measure with support
supp m ¼ E: We further assume that E contains infinitely many points.
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Denote by HpðGÞ; 1pppN; the Hardy space of those analytic functions g on G

such that jgjp has a harmonic majorant there. As is well known, such functions have
nontangential boundary values a.e. on G that establish a one-to-one correspondence
between HpðGÞ and the closed subspace of LpðGÞ consisting of functions whose

Fourier coefficients of strictly negative index do vanish; a function in HpðGÞ is

recovered from its boundary values through a Cauchy as well as a Poisson integral.
We refer the reader to [9] for details on Hardy spaces, and we merely recall here a few
facts that will be of relevance to us.
By a theorem of Szeg +o, we have that log jgjAL1ðGÞ whenever gAHpðGÞ is not the

zero function. This entails that a HpðGÞ-function is uniquely defined by the values it

assumes on a subset of G of positive Lebesgue measure. Conversely, whenever
rALpðGÞ is a positive function such that log rAL1ðGÞ; the function

ErðzÞ ¼ exp
1

2p

Z
G

xþ z

x	 z
log rðxÞ djxj

� �
; zAG; ð1:1Þ

lies in HpðGÞ and has modulus r a.e. on G: This Er is called the normalized outer

function associated with r; the normalization being that Erð0Þ40: More generally, a

function is said to be outer in HpðGÞ if it is of the form cEr with c a unimodular

constant. Obviously, an outer function has no zero in G: Granted the normalization
condition, the outer function Er is characterized by two facts, namely:

(i) jErj ¼ r a.e. on G;
(ii) among all HpðGÞ-functions that satisfy (i), Er is largest-in-modulus pointwise

on G:

A particular type of HNðGÞ-functions will also be important to us, namely finite

Blaschke products. These are the rational functions that are analytic in G and of unit
modulus on G; they assume the form q=q�; where q is an algebraic polynomial whose

roots lie in G and where q� indicates the reciprocal polynomial given by q�ðzÞ ¼
znqð1=%zÞ if n is the degree of q: The integer n is also called the degree of the Blaschke
product, and the latter is called normalized if q is monic. For any positive integer n;
we let Bn denote the class of normalized Blaschke products of degree n; upon
splitting q into linear factors in the previous definition, we see that each BABn can be
uniquely written as

BðzÞ ¼
Yn

k¼1

z 	 xk

1	 %xkz
; xkAG: ð1:2Þ

Let Ap be the restriction on E of the closed unit ball of the Hardy space HpðGÞ:
Fisher and Stessin [7,8] proved that in two important cases: when 1pqppoN; or
when 1pqoN; p ¼ 2;

dnðAp;Lqðm;EÞÞ ¼ dnðAp;Lqðm;EÞÞ ¼ dnðAp;Lqðm;EÞÞ

¼ inf
BABn

sup
jAAp

jjjBjjq;m;
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where dn; dn; and dn are the Kolmogorov, Gelfand and linear n-widths of Ap

in the space Lqðm;EÞ (see, for example, [10]), and jj 
 jjq;m is the norm in the

space Lqðm;EÞ:
Let 1pqoN; 1pppN: Set

mn ¼ mnðp; q; mÞ ¼ inf
BABn

sup
jAAp

jjjBjjq;m: ð1:3Þ

In this paper we investigate orthogonal properties of the extremal functions jn

and Bn which attain the value mn:

mn ¼ jjjnBnjjq;m: ð1:4Þ

That jn and Bn indeed exist follows from the fact that the ‘‘inf-sup’’ in (1.3) is
certainly attained if the infimization is extended to Blaschke product of degree at

most n, because the restriction of this set to E is compact in LNðEÞ and so is Ap in

Lqðm;EÞ; but the ‘‘inf’’ is obviously attained on Bn; because each elementary factor

in (1.2) has modulus strictly less than 1 on E: Necessarily jn is outer of LpðGÞ-norm
exactly 1, otherwise it could not meet the ‘‘sup’’ in (1.3). Clearly jn � 1 for p ¼ N;
and for 1ppoN is known to satisfy the following equation:

mq
n jjnðxÞj

p ¼ 1

2p

Z
E

1	 jxj2

jx	 xj2
jðjnBnÞðxÞjq dmðxÞ; xAG; ð1:5Þ

see [7, Proposition 1]. One consequence is that jjnj extends continuously on G (see

[6,7]). Actually, since jjnj is strictly positive and C1-smooth on G by (1.5), so is
log jjnj whose conjugate function Arg jn is then continuous, and therefore we see
upon taking the exponential that the outer function jn itself is continuous on G: If
qpp then jn is uniquely determined by Bn up to unimodular scalar multiples, but
this may fail if poq (it is nevertheless true if E is hyperbolically small, see [7]). To
avoid trivial cases of nonuniqueness, we assume throughout without loss of
generality that jnð0Þ40:
In Sections 2 and 3 we establish orthogonality properties of the extremal functions

jn and Bn when qpp: The authors do not know whether analogous results hold
when poq: In Section 4, a connection with meromorphic approximation is
investigated.

1.2. Notation

Above and thereafter, LpðGÞ; 1pppN; stands for the Lebesgue space of

functions j measurable on G; with the norm

jjjjjp ¼
Z
G
jjðxÞjp jdxj

� �1=p

if 1ppoN ð1:6Þ

and

jjjjj
N

¼ ess sup
G

jjðxÞj if p ¼ N:
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As well, Lqðm;EÞ; 1pqoN; is the Lebesgue space of functions j on E with the

norm

jjjjjq;m ¼
Z

E

jjðxÞjq dmðxÞ
� �1=q

oN:

Finally, for s a positive Borel measure with support supp s ¼ E; we denote by
J : H2ðGÞ-L2ðs;EÞ the embedding operator. The operator J is given by restricting
an element jAH2ðGÞ to E: Jj ¼ jjE : Let J� :L2ðs;EÞ-H2ðGÞ be the adjoint of J:

It is easily verified that for jAH2ðGÞ

ðJ�JÞðjÞðzÞ ¼ 1

2p

Z
E

jðxÞ
1	 z %x

dsðxÞ; jzjo1 ð1:7Þ

(see, for example, [5]).

2. Orthogonality properties of un and Bn

Fix 1pqoN; 1ppoN; and a positive integer n: It is not hard to see that (1.5) is
equivalent to the following relation:Z

E

uðxÞ jðjnBnÞðxÞjq dmðxÞ ¼ mq
n

Z
G

uðxÞjjnðxÞj
pjdxj; ð2:1Þ

where u is any function harmonic on G and continuous on %G: Equality (2.1) implies
that

ðjðjnBnÞðxÞjq dmðxÞÞ�ðxÞ ¼ mq
njjnðxÞj

pjdxj; xAG;

where ðjjnBnjqdmÞ� is the balayage of jjnBnjq dm on G (see, for example, [11]). It
follows from (2.1) that for any gAH1ðGÞZ

E

gðxÞjðjnBnÞðxÞjq dmðxÞ ¼ mq
n

Z
G

gðxÞjjnðxÞj
pjdxj: ð2:2Þ

We represent BnðxÞ in the form BnðxÞ ¼ wnðxÞ=w�
nðxÞ; where

wnðxÞ ¼
Yn

k¼1
ðx 	 xk;nÞ; w�

nðxÞ ¼
Yn

k¼1
ð1	 %xk;nxÞ;

and x1;n; x2;n;y; xn;n are zeros of Bn; xk;nAG; k ¼ 1;y; n:
We now prove that for 1pqppoNZ

E

xk

w�
nðxÞ

BnðxÞ 	
xn	kwnðxÞ
ðw�

nðxÞÞ
2

 !
BnðxÞ

0
@

1
AjjnðxÞj

qjBnðxÞjq	2 dmðxÞ ¼ 0;

k ¼ 0;y; n 	 1: ð2:3Þ
For BABn and jAAp; we set

CðB;jÞ9
Z

E

jðjBÞðxÞjq dmðxÞ
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and we denote by jB the unique function (up to unimodular scalar multiples) in Ap

such that

CðB;jBÞ ¼ sup
jAAp

CðB;jÞ: ð2:4Þ

Necessarily jB is outer, so we normalize it as usual by setting jBð0Þ40: We write
a generic BABn as:

BðxÞ ¼ a0 þ a1x þ?þ an	1x
n	1 þ xn

%a0xn þ %a1xn	1 þ?þ %an	1x þ 1
; ajAC;

and we single out Bn to be

BnðxÞ ¼
a0 þ a1x þ?þ an	1x

n	1 þ xn

%a0xn þ %a1xn	1 þ?þ %an	1x þ 1
;

where the aj are the coefficients of wn:

When B ranges over Bn; then ða0;y; an	1Þ ranges over an open subset O of Cn;
and this way we coordinatize Bn: Clearly, C is jointly continuous with respect to
ðajÞ0pjpn	1AO and jAAp when the latter is endowed with the topology induced by

the sup-norm on E: Observe also that Ap is compact for that topology by the Cauchy

formula and the weak-compactness of balls in HpðGÞ: Moreover, C has partial

derivatives with respect to the real and imaginary parts of the aj that are likewise

jointly continuous with respect to ðajÞ0pjpn	1 and j: Since jB is the unique

argument of the maximum in (2.4), it now follows from [4, Chapter III, Theorem 1]
that CðB;jBÞ in turn has partial derivatives with respect to the real and imaginary
parts of the aj; given by

@CðB;jBÞ
@ReðajÞ

¼ @CðB;jÞ
@ReðajÞ






j¼jB

;
@CðB;jBÞ
@ReðajÞ

¼ @CðB;jÞ
@ReðajÞ






j¼jB

:

Because B/CðB;jBÞ meets a minimum on Bn at B ¼ Bn; or in coordinates on O at
aj ¼ aj; 0pjpn 	 1; the above partial derivatives must vanish at this point and

writing that

@CðB;jBÞ
@ReðakÞ

	 i
@CðB;jBÞ
@ImðakÞ

� �




B¼Bn

¼ 0;

while taking into account that jBn
¼ jn; yields (2.3) upon differentiating under the

integral sign.

Let E	1 be the reflection of E in the unit circle and let D be the component of
%C\E	1 that contains the unit disk G:We have the following theorem (see [2] for q ¼ 2
and ECð	1; 1Þ).
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Theorem 1. The function jp=2
n can be extended analytically to D; and satisfies the

equations

mq
nðjp=2

n ÞðxÞ ¼ 1

2p

Z
E

jðjnBnÞðxÞjq

ð1	 x %xÞjp=2
n ðxÞ

dmðxÞ; xAD; 1pqoN; 1ppoN

ð2:5Þ

and

mq
nðBnjp=2

n ÞðxÞ ¼ 1

2p

Z
E

jðjnBnÞðxÞjq

ð1	 x %xÞBnðxÞjp=2
n ðxÞ

dmðxÞ; xAD; 1pqppoN:

ð2:6Þ

The following orthogonality relations are valid:Z
E

xkwnðxÞ
jw�

nðxÞj
2jp=2

n ðxÞ
jjnðxÞj

qjBnðxÞjq	2 dmðxÞ ¼ 0; k ¼ 0;y; n 	 1;

1pqppoN: ð2:7Þ

Proof. Let j be any function in H2ðGÞ; and let g ¼ j=jp=2
n :Here and in what follows

we take that branch of the ðp=2Þth root that is positive on the positive part of the real
line. By (2.2), we can writeZ

E

jðxÞjp=2
n ðxÞjjnðxÞj

q	p j BnðxÞjq dmðxÞ ¼ mq
n

Z
G
jðxÞjp=2

n ðxÞjdxj:

Therefore,

J�Jðjp=2
n Þ ¼ mq

nj
p=2
n ;

where J : H2ðGÞ-L2ðjjnj
q	pjBnjqdm;EÞ is the embedding operator. From this, on

the basis of formula (1.7) where ds ¼ jjnj
q	pjBnjq dm; we obtain (2.5).

We now can rewrite (2.3) in the formZ
E

xk

wnðxÞ
jðjnBnÞðxÞjq dmðxÞ ¼

Z
E

xn	k

w�
nðxÞ

 !
jðjnBnÞðxÞjq dmðxÞ:

By (2.2),Z
E

xn	k

w�
nðxÞ

 !
jðjnBnÞðxÞjq dmðxÞ ¼mq

n

Z
G

xn	k

w�
nðxÞ

 !
jjnðxÞj

pjdxj

¼mq
n

Z
G

xk

wnðxÞ
jjnðxÞj

pjdxj: ð2:8Þ

Hence, we haveZ
E

xk

wnðxÞ
jðjnBnÞðxÞjq dmðxÞ ¼ mq

n

Z
G

xk

wnðxÞ
jjnðxÞj

pjdxj: ð2:9Þ
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By (2.2) and (2.9), for any gAH1ðGÞZ
E

gðxÞ
wnðxÞ

jðjnBnÞðxÞjq dmðxÞ ¼ mq
n

Z
G

gðxÞ
wnðxÞ

jjnðxÞj
pjdxj: ð2:10Þ

Letting

gðxÞ ¼ w�
nðxÞ

ð1	 %txÞjp=2
n ðxÞ

; jtjo1;

we get

1

2p

Z
E

jðjnBnÞðxÞjq

ð1	 %txÞBnðxÞjp=2
n ðxÞ

dmðxÞ

¼ mq
n

2p

Z
G

BnðxÞjp=2
n ðxÞjdxj

ð1	 %txÞ ¼ mq
n

1

2pi

Z
G

BnðxÞjp=2
n ðxÞdx

x	 t

¼ mq
nBnðtÞjp=2

n ðtÞ;
and, then, (2.6).

By (2.10), for g ¼ xk=jp=2
n ; k ¼ 0;y; n 	 1; we obtain thatZ

E

xk

wnðxÞ
jðjnBnÞðxÞjq

jp=2
n ðxÞ

dmðxÞ ¼ mq
n

Z
G

xkjp=2
n ðxÞjdxj
wnðxÞ

¼ mq
n

Z
G

xn	kjp=2
n ðxÞjdxj

w�
nðxÞ

¼ mq
n

Z
G

xn	k	1jp=2
n ðxÞ dx

iw�
nðxÞ

;

consequently,Z
E

xk

wnðxÞ
jðjnBnÞðxÞjq

jp=2
n ðxÞ

dmðxÞ ¼ 0; k ¼ 0;y; n 	 1;

and (2.7) follows. &

3. The case p ¼ N

Let 1pqoN; p ¼ N; and let n be a positive integer. Since in this case

sup
jAAN

jjjBjjq;m ¼ jjBjjq;m; BABn;

we can rewrite (1.3) and (1.4) in the form

mn ¼ inf
BABn

jjBjjq;m ¼ jjBnjjq;m: ð3:1Þ

Let us consider the following function:

gnðxÞ ¼
1

2p

Z
E

1	 jxj2

jx	 xj2
BnðxÞjq dmðxÞ; xAG: ð3:2Þ
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Let u be any harmonic function on G that is continuous on the closed disk %G:
By (3.2),Z

E

uðxÞjBnðxÞjq dmðxÞ ¼
Z
G

uðxÞgnðxÞjdxj; ð3:3Þ

and consequently

ðjBnjq dmÞ�ðxÞ ¼ gnðxÞjdxj; xAG;

where ðjBnjq dmÞ� is the balayage of jBnjq dm on G: In particular, we have that

jjgnjjL1ðGÞ ¼ mq
n: ð3:4Þ

Consider now the function fnðzÞ defined on G by

fnðzÞ ¼ exp
1

4p

Z
G

xþ z

x	 z
log jgnðxÞ=mq

njdxj
� �

:

Because gn is strictly positive and continuous on G as is apparent from (3.2), the
function fn is normalized-outer in HNðGÞ by (1.1) and, from the properties of such
functions (as described in the introduction), together with (3.4), fn satisfies the
following three properties:

(a) fn is nonvanishing in G;
(b) jjfnjj2 ¼ 1 and fnð0Þ40;
(c) fn satisfies on G the equation

gnðxÞ ¼ mq
njfnðxÞj

2: ð3:5Þ

Moreover, since gn is C1-smooth and non-vanishing on G by (3.2), so is jfnj and
therefore fn itself is continuous on G:
With the aid of fn we shall prove the following version of Theorem 1 for the case

when p ¼ N (see [3] for q ¼ 2 and ECð	1; 1Þ).

Theorem 2. Let p ¼ N and 1pqoN: The function fn can be extended analytically to

D; and satisfies the equations

mq
nfnðxÞ ¼

1

2p

Z
E

jBnðxÞjq dmðxÞ
ð1	 x %xÞfnðxÞ

; xAD ð3:6Þ

and

mq
nðfnBnÞðxÞ ¼

1

2p

Z
E

jBnðxÞjq dmðxÞ
ð1	 x %xÞfnðxÞBnðxÞ

; xAD: ð3:7Þ

The following orthogonality relations are valid:Z
E

xkwnðxÞ
jw�

nðxÞj
2fnðxÞ

jBnðxÞjq	2 dmðxÞ ¼ 0; k ¼ 0;y; n 	 1: ð3:8Þ
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Proof. Let g be any function in H1ðGÞ: Using (3.2), (3.3), and (3.5), we can writeZ
E

gðxÞjBnðxÞjq dmðxÞ ¼ mq
n

Z
G

gðxÞjfnðxÞj
2jdxj: ð3:9Þ

It follows from the last formula that

J�JðfnÞ ¼ mq
nfn; ð3:10Þ

where J : H2ðGÞ-L2ðjBnjq=jfnj
2

dm;EÞ is the embedding operator. By (3.10) and
(1.7), we get (3.6).
Since for any Blaschke product BABnZ

E

jBðxÞjq dmðxÞX
Z

E

jBnðxÞjq dmðxÞ; ð3:11Þ

it follows that for k ¼ 0;y; n 	 1;Z
E

xk

w�
nðxÞ

BnðxÞ 	
xn	kwnðxÞ
ðw�

nðxÞÞ
2

 !
BnðxÞ

 !
jBnðxÞjq	2 dmðxÞ ¼ 0: ð3:12Þ

We can see from (3.12) and (3.9) thatZ
E

xk

wnðxÞ
jBnðxÞjq dmðxÞ

¼
Z

E

xn	k

w�
nðxÞ

 !
jBnðxÞjq dmðxÞ ¼ mq

n

Z
G

xn	k

w�
nðxÞ

 !
jfnðxÞj

2jdxj

¼ mq
n

Z
G

xk

wnðxÞ
jfnðxÞj

2jdxj: ð3:13Þ

By (3.9) and (3.13), for any gAH1ðGÞZ
E

gðxÞ
wnðxÞ

jBnðxÞjq dmðxÞ ¼ mq
n

Z
G

gðxÞ
wnðxÞ

jfnðxÞj
2jdxj: ð3:14Þ

Letting

gðxÞ ¼ w�
nðxÞ

ð1	%txÞfnðxÞ
; jtjo1;

we get

1

2p

Z
E

jBnðxÞjq

ð1	 %txÞBnðxÞfnðxÞ
¼ mq

n

2p

Z
G

BnðxÞfnðxÞjdxj
ð1	 %txÞ ;

mq
n

1

2pi

Z
G

BnðxÞfnðxÞ dx
x	 t

¼ mq
nBnðtÞfnðtÞ

and, then, (3.7).
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By (3.14), for

g ¼ xk

fn
; k ¼ 0;y; n 	 1;

we obtain that

Z
E

xk

wnðxÞ
jBnðxÞjq

fnðxÞ
dmðxÞ ¼mq

n

Z
G

xkfnðxÞjdxj
wnðxÞ

¼mq
n

Z
G

xn	kfnðxÞjdxj
w�

nðxÞ
¼ mq

n

Z
G

xn	k	1fnðxÞ dx
iw�

nðxÞ
;

consequently,Z
E

xk

wnðxÞ
jBnðxÞjq

fnðxÞ
dmðxÞ ¼ 0; k ¼ 0;y; n 	 1;

and (3.8) follows. &

4. Connection with meromorphic approximation

For q ¼ 2 and ECð	1; 1Þ there is an important connection between the best
meromorphic approximation error of the Markov function

f ðzÞ ¼ 1

2pi

Z
E

dmðxÞ
z 	 x

ð4:1Þ

and the extremal constant mn:
LetMn;sðGÞ; 1pspN; be the class of all meromorphic functions on G that can be

represented in the form h ¼ P=Q; where P belongs to the Hardy space HsðGÞ and Q

is a polynomial of degree at most n; Qc0: Denote by

Dn;s ¼ inf
hAMn;sðGÞ

jj f 	 hjjs

the error in best approximation of the Markov function f in the space LsðGÞ by
meromorphic functions in the class Mn;sðGÞ:
Let 1=s þ 1=t ¼ 1: The following theorem describes a connection between Dn;s and

the extremal constant mnðp; q; mÞ with q ¼ 2 and p ¼ 2t (see [1,2]).

Theorem 3. (i) We have

Dn;s ¼ m2
nð2t; 2; mÞ;

(ii) there exists a best meromorphic approximant hn in Mn;sðGÞ to the Markov

function f in the space LsðGÞ such that

Dn;s ¼ jj f 	 hnjjs
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and

hn ¼ Pn=Bn;

where PnAHsðGÞ and Bn is a solution of the extremal problem (1.3) with q ¼ 2 and

p ¼ 2t;
(iii) the function hn satisfies a.e. on G the following equations:

ðj2
nB2

nÞðxÞð f 	 hnÞðxÞ dx ¼ Dn;sjjnðxÞj
2tj dxj if 1ospN;

and

ðB2
nð f 	 hnÞÞðxÞ dx ¼ jð f 	 hnÞðxÞjjdxj if s ¼ 1:

Proof. We shall show that this theorem follows easily from results of Sections 2 and
3. Without loss of generality we assume that 1ospN: Let

mn ¼ mnð2t; 2; mÞ ¼ inf
BABn

sup
jAA2t

jjjBjj2;m ¼ jjjnBnjj2;m: ð4:2Þ

Since ECR it is not hard to prove that all zeros x1;n;y; xn;n of Bn belong to the

smallest interval KðEÞ containing support supp m ¼ E of m (see, for example, [1]).

Using (1.5) with q ¼ 2 and p ¼ 2t; we can write jjnð%xÞj ¼ jjnðxÞj for xAG: Since jn is
outer, it follows from this that

jnð%xÞ ¼ cjnðxÞ; xAG; jcj ¼ 1: ð4:3Þ

As above we can assume that jnð0Þ40: Then (4.3) yields jn40 on ð	1; 1Þ:
By (2.10), for any function gAH1ðGÞ we getZ

E

gðxÞj2
nðxÞBnðxÞ dmðxÞ ¼ m2

n

Z
G

gðxÞBnðxÞjjnðxÞj
2tjdxj

and (see (4.1))Z
G

gðxÞj2
nðxÞBnðxÞf ðxÞ dx ¼ m2

n

Z
G

gðxÞBnðxÞjjnðxÞj
2tjdxj: ð4:4Þ

Since (4.4) is valid for any gAH1ðGÞ; it follows (see, for example, [9]) that there
exists a function pAHNðGÞ such that

j2
nðxÞBnðxÞf ðxÞ 	 m2

nBnðxÞjjnðxÞj
2tjdxj=dx ¼ pðxÞ

a.e. on G: From this we obtain that

j2
nðxÞB2

nðxÞ f ðxÞ 	 pðxÞ
j2

nðxÞBnðxÞ

� �
dx ¼ m2

njjnðxÞj
2tjdxj ð4:5Þ

a.e. on G: Since jjjnjj2t ¼ 1; we can conclude from the last relation that

jj f 	 hnjjs ¼ m2
n; ð4:6Þ

where hn ¼ Pn=Bn and Pn ¼ p=j2
n: We remark that hnAMn;sðGÞ:
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By the duality results (see [9]), (4.2) and (4.1), we get

Dn;s ¼ inf
BABn

sup
jAAt

Z
G
ðjBf ÞðxÞ dx












¼ inf
BABn

sup
jAAt

Z
E

jðxÞBðxÞ dmðxÞ










Xm2
n: ð4:7Þ

Therefore, by (4.6), (4.7), and the fact that the function hnAMn;sðGÞ; we get
m2

n ¼ Dn;s ¼ jjf 	 hnjjs: &
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